Fuzzy Approximate Learning-Based Sliding Mode Control for Deploying Tethered Space Robot

This article proposes a hybrid control scheme synthesizing fuzzy approximate Q -iteration algorithm and discrete-time terminal-like sliding mode control for deploying tethered space robot, which is modeled as a deterministic Markov decision process. The existence of a switching condition allows FQ-i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems Jg. 29; H. 9; S. 2739 - 2749
Hauptverfasser: Ma, Zhiqiang, Huang, Panfeng, Kuang, Zhian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1063-6706, 1941-0034
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a hybrid control scheme synthesizing fuzzy approximate Q -iteration algorithm and discrete-time terminal-like sliding mode control for deploying tethered space robot, which is modeled as a deterministic Markov decision process. The existence of a switching condition allows FQ-iteration algorithm and terminal-like sliding surface constituting an optimal sliding mode control, and the fuzzy logic approximation is employed to improve the efficiency of optimization. Under arbitrary switching, the sliding mode reaching law works to compress the contraction of sliding surface variable. Simulation results verify the analyses on contraction of fuzzy approximate Q -iteration for optimal sliding mode control, the stability of reduced-order system yielded by the proposed discrete-time terminal-like sliding surface, and existence of switching condition.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2020.3006583