Target-Value-Competition-Based Multi-Agent Deep Reinforcement Learning Algorithm for Distributed Nonconvex Economic Dispatch
With the increasing expansion of the power grid, economic dispatch problems have received considerable attention. A multi-agent coordinated deep reinforcement learning algorithm is proposed to deal with distributed nonconvex economic dispatch problems. In the algorithm, agents run independent reinfo...
Uloženo v:
| Vydáno v: | IEEE transactions on power systems Ročník 38; číslo 1; s. 204 - 217 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0885-8950, 1558-0679 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | With the increasing expansion of the power grid, economic dispatch problems have received considerable attention. A multi-agent coordinated deep reinforcement learning algorithm is proposed to deal with distributed nonconvex economic dispatch problems. In the algorithm, agents run independent reinforcement learning algorithms and update their local Q-functions with a newly defined joint reward. The double network structure is adopted to approximate the Q-function so that the offline trained model can be used online to provide recommended power outputs for time-varying demands in real-time. By introducing the reward network, the competition mechanism between the reward network and the target network is established to determine a progressively stable target value, which achieves coordination among agents and pledges the losses of the Q-networks to converge well. Theoretical analysis is given and case studies are conducted to prove the advantages compared with existing approaches. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-8950 1558-0679 |
| DOI: | 10.1109/TPWRS.2022.3159825 |