Two-Stage Chance-Constrained Stochastic Thermal Unit Commitment for Optimal Provision of Virtual Inertia in Wind-Storage Systems

The frequency security problem becomes a critical concern in power systems when the system inertia is lowered due to the high penetration of renewable energy sources (RESs). A wind-storage system (WSS) controlled by power electronics can provide the virtual inertia to guarantee the fast frequency re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on power systems Ročník 36; číslo 4; s. 3520 - 3530
Hlavní autori: Ding, Tao, Zeng, Ziyu, Qu, Ming, Catalao, Joao P. S., Shahidehpour, Mohammad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0885-8950, 1558-0679
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The frequency security problem becomes a critical concern in power systems when the system inertia is lowered due to the high penetration of renewable energy sources (RESs). A wind-storage system (WSS) controlled by power electronics can provide the virtual inertia to guarantee the fast frequency response after a disturbance. However, the provision of virtual inertia might be affected by the variability of wind power generation. To address this concern, we propose a two-stage chance-constrained stochastic optimization (TSCCSO) model to find the optimal thermal unit commitment (i.e., economic operation) and the optimal placement of virtual inertia (i.e., frequency stability) in a power grid using representative power system operation scenarios. An enhanced bilinear Benders decomposition method is employed with strong valid cuts to effectively solve the proposed optimization model. Numerical results on a practical power system show the effectiveness of the proposed model and solution method.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2021.3051523