Two-Stage Chance-Constrained Stochastic Thermal Unit Commitment for Optimal Provision of Virtual Inertia in Wind-Storage Systems
The frequency security problem becomes a critical concern in power systems when the system inertia is lowered due to the high penetration of renewable energy sources (RESs). A wind-storage system (WSS) controlled by power electronics can provide the virtual inertia to guarantee the fast frequency re...
Saved in:
| Published in: | IEEE transactions on power systems Vol. 36; no. 4; pp. 3520 - 3530 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0885-8950, 1558-0679 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The frequency security problem becomes a critical concern in power systems when the system inertia is lowered due to the high penetration of renewable energy sources (RESs). A wind-storage system (WSS) controlled by power electronics can provide the virtual inertia to guarantee the fast frequency response after a disturbance. However, the provision of virtual inertia might be affected by the variability of wind power generation. To address this concern, we propose a two-stage chance-constrained stochastic optimization (TSCCSO) model to find the optimal thermal unit commitment (i.e., economic operation) and the optimal placement of virtual inertia (i.e., frequency stability) in a power grid using representative power system operation scenarios. An enhanced bilinear Benders decomposition method is employed with strong valid cuts to effectively solve the proposed optimization model. Numerical results on a practical power system show the effectiveness of the proposed model and solution method. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-8950 1558-0679 |
| DOI: | 10.1109/TPWRS.2021.3051523 |