Image Reconstruction via Manifold Constrained Convolutional Sparse Coding for Image Sets

Convolution sparse coding (CSC) has attracted much attention recently due to its advantages in image reconstruction and enhancement. However, the coding process suffers from perturbations caused by variations of input samples, as the consistence of features from similar input samples are not well ad...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in signal processing Ročník 11; číslo 7; s. 1072 - 1081
Hlavní autoři: Yang, Linlin, Li, Ce, Han, Jungong, Chen, Chen, Ye, Qixiang, Zhang, Baochang, Cao, Xianbin, Liu, Wanquan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1932-4553, 1941-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Convolution sparse coding (CSC) has attracted much attention recently due to its advantages in image reconstruction and enhancement. However, the coding process suffers from perturbations caused by variations of input samples, as the consistence of features from similar input samples are not well addressed in the existing literature. In this paper, we will tackle this feature consistence problem from a set of samples via a proposed manifold constrained convolutional sparse coding (MCSC) method. The core idea of MCSC is to use the intrinsic manifold (Laplacian) structure of the input data to regularize the traditional CSC such that the consistence between features extracted from input samples can be well preserved. To implement the proposed MCSC method efficiently, the alternating direction method of multipliers (ADMM) approach is employed, which can consistently integrate the underlying Laplacian constraints during the optimization process. With this regularized data structure constraint, the MCSC can achieve a much better solution which is robust to the variance of the input samples against overcomplete filters. We demonstrate the capacity of MCSC by providing the state-of-the-art results when applied it to the task of reconstructing light fields. Finally, we show that the proposed MCSC is a generic approach as it also achieves better results than the state-of-the-art approaches based on convolutional sparse coding in other image reconstruction tasks, such as face reconstruction, digit reconstruction, and image restoration.
AbstractList Convolution sparse coding (CSC) has attracted much attention recently due to its advantages in image reconstruction and enhancement. However, the coding process suffers from perturbations caused by variations of input samples, as the consistence of features from similar input samples are not well addressed in the existing literature. In this paper, we will tackle this feature consistence problem from a set of samples via a proposed manifold constrained convolutional sparse coding (MCSC) method. The core idea of MCSC is to use the intrinsic manifold (Laplacian) structure of the input data to regularize the traditional CSC such that the consistence between features extracted from input samples can be well preserved. To implement the proposed MCSC method efficiently, the alternating direction method of multipliers (ADMM) approach is employed, which can consistently integrate the underlying Laplacian constraints during the optimization process. With this regularized data structure constraint, the MCSC can achieve a much better solution which is robust to the variance of the input samples against overcomplete filters. We demonstrate the capacity of MCSC by providing the state-of-the-art results when applied it to the task of reconstructing light fields. Finally, we show that the proposed MCSC is a generic approach as it also achieves better results than the state-of-the-art approaches based on convolutional sparse coding in other image reconstruction tasks, such as face reconstruction, digit reconstruction, and image restoration.
Author Chen Chen
Baochang Zhang
Xianbin Cao
Ce Li
Qixiang Ye
Jungong Han
Linlin Yang
Wanquan Liu
Author_xml – sequence: 1
  givenname: Linlin
  surname: Yang
  fullname: Yang, Linlin
– sequence: 2
  givenname: Ce
  surname: Li
  fullname: Li, Ce
– sequence: 3
  givenname: Jungong
  surname: Han
  fullname: Han, Jungong
– sequence: 4
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 5
  givenname: Qixiang
  surname: Ye
  fullname: Ye, Qixiang
– sequence: 6
  givenname: Baochang
  surname: Zhang
  fullname: Zhang, Baochang
– sequence: 7
  givenname: Xianbin
  surname: Cao
  fullname: Cao, Xianbin
– sequence: 8
  givenname: Wanquan
  surname: Liu
  fullname: Liu, Wanquan
BookMark eNp9kE1Lw0AQhhdRsK3-Ab0EPKfud3aPUvyoVBRTwVvYbCclJc3W3aTgvzdpigcPnmaYeZ9h3neMTmtXA0JXBE8Jwfr2OV2mb1OKSTKlCWdSsRM0IpqTGHPFT_ue0ZgLwc7ROIQNxiKRhI_Q53xr1hC9g3V1aHxrm9LV0b400Yupy8JVq2h22JiyhkO_d1Xbi0wVpTvjA3TDVVmvo8L5aLiWQhMu0FlhqgCXxzpBHw_3y9lTvHh9nM_uFrGlWjSxYUZIa22SY2xBSw3WGGpkTmgC2OJccKuUFUVOQHFdEJlLKUieJ8poDgmboJvh7s67rxZCk21c67vvQka0kJwyRWSnUoPKeheChyKzZWN6G72zKiM463PMDjlmfY7ZMccOpX_QnS-3xn__D10PUAkAv4DCRHS-2A-2p4Hl
CODEN IJSTGY
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110443
crossref_primary_10_1109_TGRS_2018_2864750
crossref_primary_10_1007_s11263_022_01700_x
crossref_primary_10_1007_s11042_023_15860_6
crossref_primary_10_1007_s41095_021_0259_z
crossref_primary_10_1109_JSTARS_2020_3028774
crossref_primary_10_1007_s11554_018_0758_z
crossref_primary_10_1109_ACCESS_2020_3003254
crossref_primary_10_1109_ACCESS_2019_2893277
crossref_primary_10_1016_j_dsp_2023_104139
crossref_primary_10_1016_j_asoc_2022_109130
crossref_primary_10_1109_JSTSP_2018_2877497
crossref_primary_10_1016_j_patcog_2017_12_023
crossref_primary_10_1007_s11042_018_6071_9
crossref_primary_10_1007_s11063_018_9871_z
crossref_primary_10_3390_electronics10233021
crossref_primary_10_1109_TIP_2020_2985875
crossref_primary_10_1002_wics_1646
crossref_primary_10_1016_j_knosys_2022_110185
crossref_primary_10_1016_j_apm_2025_116382
crossref_primary_10_1109_ACCESS_2020_2999457
Cites_doi 10.1109/ICCV.2011.6126474
10.1126/science.290.5500.2323
10.1109/TCSVT.2016.2540978
10.1117/2.1201008.003113
10.1007/978-3-319-48896-7_67
10.1109/SSIAI.2016.7459193
10.1109/TIP.2014.2323127
10.1109/34.927464
10.1111/cgf.12819
10.1109/CVPR.2013.57
10.1364/OE.22.026338
10.1007/s11263-016-0880-y
10.1109/TSMC.2016.2629509
10.1111/j.1467-9868.2005.00503.x
10.1109/CVPR.2015.7298717
10.1117/12.940766
10.1145/2682631
10.1145/2461912.2461914
10.1109/CVPR.2015.7299086
10.1109/CVPR.2010.5539943
10.1109/34.291440
10.1109/TIP.2017.2718189
10.1109/TIP.2012.2210237
10.1109/ICIP.2016.7532579
10.1561/2400000003
10.1016/0024-3795(79)90089-2
10.1109/TPAMI.2013.2295311
10.1109/CVPR.2015.7299149
10.1109/CVPR.2014.394
10.1109/CVPR.2010.5539957
10.1109/CVPR.2013.465
10.1109/IVMSPW.2016.7528229
10.1111/cgf.13086
10.1109/TPAMI.2014.2388226
10.1109/ICCV.2015.212
10.1561/2200000016
10.1109/MLSP.2015.7324332
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2017.2743683
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 1081
ExternalDocumentID 10_1109_JSTSP_2017_2743683
8015127
Genre orig-research
GrantInformation_xml – fundername: Beijing Municipal Science and Technology Commission
  grantid: Z161100001616005
– fundername: Natural Science Foundation of China
  grantid: 61672079; 61601466; 61473086
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
RIG
ID FETCH-LOGICAL-c295t-a3a56ccc7b00ce969ecaa2a6b127e0c0b54c88c5fb1e849f16b6651bb78a94e73
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413944400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4553
IngestDate Mon Jun 30 10:19:20 EDT 2025
Sat Nov 29 04:10:31 EST 2025
Tue Nov 18 21:51:28 EST 2025
Tue Aug 26 16:43:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a3a56ccc7b00ce969ecaa2a6b127e0c0b54c88c5fb1e849f16b6651bb78a94e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1956423816
PQPubID 75721
PageCount 10
ParticipantIDs proquest_journals_1956423816
crossref_citationtrail_10_1109_JSTSP_2017_2743683
crossref_primary_10_1109_JSTSP_2017_2743683
ieee_primary_8015127
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref39
ref17
ref38
ref19
ref18
belkin (ref4) 0; 14
marwah (ref1) 2013; 32
mairal (ref37) 2010; 11
andilla (ref16) 2014
roweis (ref3) 2000; 290
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
belkin (ref5) 2006; 7
shi (ref2) 2014; 34
ref28
ref27
adams (ref36) 2008
ref29
ref8
ref7
ref9
ref6
ref40
References_xml – ident: ref10
  doi: 10.1109/ICCV.2011.6126474
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref3
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref42
  doi: 10.1109/TCSVT.2016.2540978
– year: 2008
  ident: ref36
  article-title: Stanford light field archive
– ident: ref27
  doi: 10.1117/2.1201008.003113
– ident: ref31
  doi: 10.1007/978-3-319-48896-7_67
– ident: ref20
  doi: 10.1109/SSIAI.2016.7459193
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref5
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– volume: 11
  start-page: 19
  year: 2010
  ident: ref37
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
– ident: ref38
  doi: 10.1109/TIP.2014.2323127
– ident: ref33
  doi: 10.1109/34.927464
– ident: ref18
  doi: 10.1111/cgf.12819
– ident: ref26
  doi: 10.1109/CVPR.2013.57
– ident: ref19
  doi: 10.1364/OE.22.026338
– ident: ref39
  doi: 10.1007/s11263-016-0880-y
– start-page: 64
  year: 2014
  ident: ref16
  article-title: Sparse space-time deconvolution for calcium image analysis
  publication-title: Adv Neural Inf Process Syst
– ident: ref41
  doi: 10.1109/TSMC.2016.2629509
– ident: ref30
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref7
  doi: 10.1109/CVPR.2015.7298717
– ident: ref29
  doi: 10.1117/12.940766
– volume: 34
  year: 2014
  ident: ref2
  article-title: Light field reconstruction using sparsity in the continuous fourier domain
  publication-title: ACM Trans Graph
  doi: 10.1145/2682631
– volume: 32
  year: 2013
  ident: ref1
  article-title: Compressive light field photography using overcomplete dictionaries and optimized projections
  publication-title: ACM Trans Graph
  doi: 10.1145/2461912.2461914
– ident: ref6
  doi: 10.1109/CVPR.2015.7299086
– ident: ref21
  doi: 10.1109/CVPR.2010.5539943
– ident: ref34
  doi: 10.1109/34.291440
– ident: ref40
  doi: 10.1109/TIP.2017.2718189
– ident: ref28
  doi: 10.1109/TIP.2012.2210237
– ident: ref22
  doi: 10.1109/ICIP.2016.7532579
– ident: ref25
  doi: 10.1561/2400000003
– ident: ref32
  doi: 10.1016/0024-3795(79)90089-2
– ident: ref14
  doi: 10.1109/TPAMI.2013.2295311
– ident: ref8
  doi: 10.1109/CVPR.2015.7299149
– ident: ref11
  doi: 10.1109/CVPR.2014.394
– ident: ref12
  doi: 10.1109/CVPR.2010.5539957
– ident: ref9
  doi: 10.1109/CVPR.2013.465
– ident: ref17
  doi: 10.1109/IVMSPW.2016.7528229
– ident: ref23
  doi: 10.1111/cgf.13086
– ident: ref35
  doi: 10.1109/TPAMI.2014.2388226
– ident: ref13
  doi: 10.1109/ICCV.2015.212
– ident: ref24
  doi: 10.1561/2200000016
– volume: 14
  start-page: 585
  year: 0
  ident: ref4
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref15
  doi: 10.1109/MLSP.2015.7324332
SSID ssj0057614
Score 2.3475509
Snippet Convolution sparse coding (CSC) has attracted much attention recently due to its advantages in image reconstruction and enhancement. However, the coding...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1072
SubjectTerms Constraints
Convolution
Convolutional codes
Convolutional sparse coding
Data structures
Feature extraction
Image coding
image deblurring
Image enhancement
Image reconstruction
Image restoration
light field
Light fields
manifold constrained convolutional sparse coding
Manifolds
Robustness (mathematics)
State of the art
Title Image Reconstruction via Manifold Constrained Convolutional Sparse Coding for Image Sets
URI https://ieeexplore.ieee.org/document/8015127
https://www.proquest.com/docview/1956423816
Volume 11
WOSCitedRecordID wos000413944400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcNDiQQ--xfoiB2-aNtls9nEUsehBEarQW9idTKCgbbG13-_uJq2KInhbkp1lMzM7j-w8AM5ZSRUm2sRMk4q5tSZWaERMLNFVJn1NLR6aTciHBzUY6McVuFzmwhBRCD6jjh-Gu_xyjO_-V1nXSVOnn-QqrEop6lythdR1ZnPa3CCzmOd5tkiQSXTXsXj_0UdxyY7zwTKhsm9KKHRV-SGKg37pbf1vZ9uw2diR0VVN-B1YodEubHypLrgHg7tXJywi72B-lomN5kMT3ZvRsBq_lNF1eGMcTBjPGz50C_cnzuMl99DrtshZtlG9Wp9m03147t08Xd_GTSOFGJnOZ7HJTC4QUbozhqSFJjSGGWHdlinBxOYclcK8sikprqtUWCHy1FqpjOYkswNojcYjOoSocgq_EkqVZIjzqjTWMLSCWYbOUMuxDekCswU2Vcb9d7wUwdtIdBGoUXhqFA012nCxhJnUNTb-nL3n8b-c2aC-DScLAhbNMZwWPhmSe6NEHP0OdQzrfu06Ou8EWo4YdAprOJ8Np29ngcM-AMI1z48
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9sw8Mi6wdqHdl1bmn5sfujb5tSWJVl6LGElYUkIpIO8Gel8hkCblCbN768kO1nHRmFvwtbJ8p10H9J9AFyxkipMtImZJhVza02s0MiYWKKrLPc5tXgoNpGPRmo61eMWfN_GwhBRcD6jjm-Gu_xygc_-qOzacVMnn_J38N5XzhJ1tNaG7zrFOW3ukFnMhcg2ITKJvnaLfDL2flx5x1lhmVTZH2Io1FX5ixkHCXN78H9z-wT7jSYZ3dSkP4QWzT_D3qv8gkcw7T84dhF5E_N3othoPTPR0Mxn1eK-jLrhjXEwob1uVqIbePLobF5yD710i5xuG9WjTWi1PIZftz_uur24KaUQI9NiFZvMCImIudtlSFpqQmOYkdZNmRJMrOCoFIrKpqS4rlJppRSptbkymlOencDOfDGnU4gqh_lKKlWSIc6r0ljD0EpmGTpVTWAb0g1mC2zyjPv_uC-CvZHoIlCj8NQoGmq04dsW5rHOsvFm7yOP_23PBvVtuNgQsGg24rLw4ZDcqyXy7N9QX-Fj7244KAb90c9z2PXfqX31LmDHEYYu4QOuV7Pl05ew2l4Av6HS2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Reconstruction+via+Manifold+Constrained+Convolutional+Sparse+Coding+for+Image+Sets&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Yang%2C+Linlin&rft.au=Li%2C+Ce&rft.au=Han%2C+Jungong&rft.au=Chen%2C+Chen&rft.date=2017-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=11&rft.issue=7&rft.spage=1072&rft_id=info:doi/10.1109%2FJSTSP.2017.2743683&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon