Joint Source-Channel Coding for Broadcasting Correlated Sources
This paper studies lossy transmission of a memoryless bivariate Gaussian source over a bandwidth-mismatched memoryless Gaussian broadcast channel with two receivers, where each receiver is interested in reconstructing only one source component. For both bandwidth expansion and compression regimes, n...
Uloženo v:
| Vydáno v: | IEEE transactions on communications Ročník 65; číslo 7; s. 3012 - 3022 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper studies lossy transmission of a memoryless bivariate Gaussian source over a bandwidth-mismatched memoryless Gaussian broadcast channel with two receivers, where each receiver is interested in reconstructing only one source component. For both bandwidth expansion and compression regimes, novel hybrid digital/analog (HDA) coding schemes are proposed. With appropriate choice of parameters, our schemes are shown to specialize to separate source-channel coding studied by Gao and Tuncel, and is, therefore, superior to it in both bandwidth regimes. Our scheme for bandwidth expansion also outperforms the HDA coding scheme of Behroozi et al. On the other hand, if a proposed conjecture (supported by numerical observations) is indeed true, the same superiority follows for the bandwidth compression regime as well. Finally, when the bandwidth expansion/compression ratio approaches 1, both of our schemes become optimal as their performance approaches that of the bandwidth-matched scheme of Tian et al. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2017.2698031 |