Cloud‐Fog Cooperative Computation Offloading and Resource Allocation in Heterogeneous Networks Based on Genetic Algorithm
In this paper, we investigate the computation offloading and resource allocation strategy of the coexistence and synergy between fog computing and cloud computing in heterogeneous networks. Consider that the reported schemes have prohibitive complexity when achieving the optimal computation offloadi...
Uloženo v:
| Vydáno v: | IET communications Ročník 19; číslo 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Stevenage
John Wiley & Sons, Inc
01.01.2025
|
| Témata: | |
| ISSN: | 1751-8628, 1751-8636 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we investigate the computation offloading and resource allocation strategy of the coexistence and synergy between fog computing and cloud computing in heterogeneous networks. Consider that the reported schemes have prohibitive complexity when achieving the optimal computation offloading strategy in cloud‐fog cooperative heterogeneous networks, an improved genetic algorithm (IGA) is proposed in this paper, which can maintain a low computation complexity while obtaining the optimal solution. In the IGA algorithm, we propose to use a penalty function to express the constraint conditions of the optimisation problem and use a non‐uniform mutation operator to accelerate the convergence speed. Besides, an improved method of parameter self‐adaptation and a perturbation method of mutation probability based on population fitness standard deviation are proposed to optimise the genetic algorithm. The numerical results show that the proposed genetic algorithm can obtain a lower average cost of the system while keeping a smaller computational cost. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1751-8628 1751-8636 |
| DOI: | 10.1049/cmu2.70051 |