Energy Efficient Wireless Relay Networks With Computational Awareness

In this paper, we investigate joint subcarrier (SC) allocation, pairing and power loading for optimized energy efficiency (EE) in multiuser, multicell, multicarrier downlink decode-and-forward (DF) relay interference networks with computational awareness, i.e., taking computations-related energy int...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on communications Ročník 68; číslo 2; s. 825 - 840
Hlavní autori: Bossy, Bartosz, Kryszkiewicz, Pawel, Bogucka, Hanna
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0090-6778, 1558-0857
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we investigate joint subcarrier (SC) allocation, pairing and power loading for optimized energy efficiency (EE) in multiuser, multicell, multicarrier downlink decode-and-forward (DF) relay interference networks with computational awareness, i.e., taking computations-related energy into account. In order to maximize EE of the network, the transmission mode is adapted to instantaneous channel conditions. For the benefit of spectral-efficiency, both direct- and relayed transmission is allowed to use the same SCs simultaneously. Linearly rate-dependent power consumption of signal processing is considered. The formulated optimization problem is the nonconvex fractional mixed binary-integer programming problem, which has NP-hard complexity. Hence, we approximate the problem by the series of equivalent convex problems applying convex relaxation techniques such as a Successive Convex Approximation (SCA). Based on these transformations, we develop an iterative algorithm exploiting the Dinkelbach method to tackle the nonlinear fractional programming problem which maximizes EE of the system. Moreover, in our considerations, the total transmission power constraint and the minimum required rate constraints have been included. Simulation results demonstrate the effectiveness of our solution for future relay networks.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2019.2953660