Coupled Dictionaries for Exemplar-Based Speech Enhancement and Automatic Speech Recognition
Exemplar-based speech enhancement systems work by decomposing the noisy speech as a weighted sum of speech and noise exemplars stored in a dictionary and use the resulting speech and noise estimates to obtain a time-varying filter in the full-resolution frequency domain to enhance the noisy speech....
Uloženo v:
| Vydáno v: | IEEE/ACM transactions on audio, speech, and language processing Ročník 23; číslo 11; s. 1788 - 1799 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2015
|
| Témata: | |
| ISSN: | 2329-9290, 2329-9304 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Exemplar-based speech enhancement systems work by decomposing the noisy speech as a weighted sum of speech and noise exemplars stored in a dictionary and use the resulting speech and noise estimates to obtain a time-varying filter in the full-resolution frequency domain to enhance the noisy speech. To obtain the decomposition, exemplars sampled in lower dimensional spaces are preferred over the full-resolution frequency domain for their reduced computational complexity and the ability to better generalize to unseen cases. But the resulting filter may be sub-optimal as the mapping of the obtained speech and noise estimates to the full-resolution frequency domain yields a low-rank approximation. This paper proposes an efficient way to directly compute the full-resolution frequency estimates of speech and noise using coupled dictionaries: an input dictionary containing atoms from the desired exemplar space to obtain the decomposition and a coupled output dictionary containing exemplars from the full-resolution frequency domain. We also introduce modulation spectrogram features for the exemplar-based tasks using this approach. The proposed system was evaluated for various choices of input exemplars and yielded improved speech enhancement performances on the AURORA-2 and AURORA-4 databases. We further show that the proposed approach also results in improved word error rates (WERs) for the speech recognition tasks using HMM-GMM and deep-neural network (DNN) based systems. |
|---|---|
| ISSN: | 2329-9290 2329-9304 |
| DOI: | 10.1109/TASLP.2015.2450491 |