Massive MIMO Adaptive Modulation and Coding Using Online Deep Learning Algorithm

The letter describes an online deep learning algorithm (ODL) for adaptive modulation and coding in massive MIMO. The algorithm is based on a fully connected neural network, which is initially trained on the output of the traditional algorithm and then incrementally retrained by the service feedback...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE communications letters Ročník 26; číslo 4; s. 818 - 822
Hlavní autori: Bobrov, Evgeny, Kropotov, Dmitry, Lu, Hao, Zaev, Danila
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-7798, 1558-2558
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The letter describes an online deep learning algorithm (ODL) for adaptive modulation and coding in massive MIMO. The algorithm is based on a fully connected neural network, which is initially trained on the output of the traditional algorithm and then incrementally retrained by the service feedback of its output. We show the advantage of our solution over the state-of-the-art Q-learning approach. We provide system-level simulation results to support this conclusion in various scenarios with different channel characteristics and different user speeds. Compared with traditional OLLA, the algorithm shows a 10% to 20% improvement in user throughput in the full-buffer case.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2021.3132947