Designing Multi-Task Convolutional Variational Autoencoder for Radio Tomographic Imaging
Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to...
Saved in:
| Published in: | IEEE transactions on circuits and systems. II, Express briefs Vol. 69; no. 1; pp. 219 - 223 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1549-7747, 1558-3791 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to realize RTI. The presented model is trained end-to-end to denoise the RSS measurements, reconstruct the static tomographic images, estimate the parameters of the wireless network, and classify the measurement noise level, simultaneously. The multi-task variational learning strategy is able to improve the generalization of the model. Numerical experiments demonstrate the efficacy of our RTI method. |
|---|---|
| AbstractList | Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to realize RTI. The presented model is trained end-to-end to denoise the RSS measurements, reconstruct the static tomographic images, estimate the parameters of the wireless network, and classify the measurement noise level, simultaneously. The multi-task variational learning strategy is able to improve the generalization of the model. Numerical experiments demonstrate the efficacy of our RTI method. |
| Author | Ma, Xiaoli Liu, Songyong Wu, Hongzhuang |
| Author_xml | – sequence: 1 givenname: Hongzhuang orcidid: 0000-0001-6024-0450 surname: Wu fullname: Wu, Hongzhuang email: w_cumt@outlook.com organization: School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Xiaoli orcidid: 0000-0002-3076-2589 surname: Ma fullname: Ma, Xiaoli email: xiaoli@gatech.edu organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 3 givenname: Songyong orcidid: 0000-0002-2801-7969 surname: Liu fullname: Liu, Songyong email: lsycumt@163.com organization: School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China |
| BookMark | eNp9kMtOwzAQRS1UJNrCD8AmEuuU8SNxvKzKK1IREgTEznISJ7ikcbETJP6e9CEWLFjNXcy5mjkTNGptqxE6xzDDGMRVtnhO0xkBgmcUEiwEP0JjHEVJSLnAo21mIuSc8RM08X4FQARQMkZv19qbujVtHTz0TWfCTPmPYGHbL9v0nbGtaoJX5Yw65HnfWd0WttQuqKwLnlRpbJDZta2d2rybIkjXqh7qTtFxpRqvzw5zil5ub7LFfbh8vEsX82VYEBF1IVc8B15pwXkBBFQeM5FHQmFBc04Z0BJXFJdMM6pxCQVTPMG8Ag2MlDEIOkWX-96Ns5-99p1c2d4Np3pJYhxzgkUMw1ay3yqc9d7pSham2_3UOWUaiUFuPcqdR7n1KA8eB5T8QTfOrJX7_h-62ENGa_0LCEajBCj9AcMrgKE |
| CODEN | ITCSFK |
| CitedBy_id | crossref_primary_10_1109_JSEN_2022_3195038 crossref_primary_10_1109_LCOMM_2023_3272841 crossref_primary_10_1109_TCSII_2023_3269051 crossref_primary_10_1038_s41598_025_99694_2 crossref_primary_10_1109_TII_2021_3123546 crossref_primary_10_1109_LSP_2022_3220149 crossref_primary_10_1109_TVT_2024_3418876 |
| Cites_doi | 10.1109/CISS48834.2020.1570617238 10.1109/TMC.2009.174 10.1109/AGENTS.2017.8015323 10.1109/TCSII.2020.3039526 10.1109/TWC.2016.2585141 10.1016/j.neucom.2018.11.106 10.1109/TSP.2018.2799169 10.1109/TSP.2020.3003130 10.1109/TVT.2016.2635161 10.1109/JSTSP.2013.2287471 10.1109/TIM.2019.2942171 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCSII.2021.3081997 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3791 |
| EndPage | 223 |
| ExternalDocumentID | 10_1109_TCSII_2021_3081997 9435803 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) funderid: 10.13039/501100012246 – fundername: China Scholarship Council grantid: 201806420061 funderid: 10.13039/501100004543 |
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 6J9 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PZZ RIA RIE RNS RXW TAE TAF VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-7a7b07fe977c020ab649b59a193b73403d1f31d4e43e1d0c4a7817f0e042d6093 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739632700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-7747 |
| IngestDate | Sun Jun 29 16:17:36 EDT 2025 Sat Nov 29 02:23:15 EST 2025 Tue Nov 18 22:28:57 EST 2025 Wed Aug 27 03:03:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-7a7b07fe977c020ab649b59a193b73403d1f31d4e43e1d0c4a7817f0e042d6093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3076-2589 0000-0002-2801-7969 0000-0001-6024-0450 |
| PQID | 2616721960 |
| PQPubID | 85412 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2616721960 ieee_primary_9435803 crossref_citationtrail_10_1109_TCSII_2021_3081997 crossref_primary_10_1109_TCSII_2021_3081997 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. 2022-1-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems. II, Express briefs |
| PublicationTitleAbbrev | TCSII |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Doersch (ref12) 2016 ref11 ref10 ref2 ref1 ref8 Kingma (ref14) 2013 ref7 ref9 ref4 ref3 ref6 Ruder (ref13) 2017 ref5 |
| References_xml | – ident: ref8 doi: 10.1109/CISS48834.2020.1570617238 – volume-title: Auto-encoding variational Bayes year: 2013 ident: ref14 – ident: ref2 doi: 10.1109/TMC.2009.174 – volume-title: An overview of multi-task learning in deep neural networks year: 2017 ident: ref13 – ident: ref3 doi: 10.1109/AGENTS.2017.8015323 – ident: ref10 doi: 10.1109/TCSII.2020.3039526 – ident: ref5 doi: 10.1109/TWC.2016.2585141 – ident: ref9 doi: 10.1016/j.neucom.2018.11.106 – ident: ref6 doi: 10.1109/TSP.2018.2799169 – volume-title: Tutorial on variational autoencoders year: 2016 ident: ref12 – ident: ref7 doi: 10.1109/TSP.2020.3003130 – ident: ref11 doi: 10.1109/TVT.2016.2635161 – ident: ref4 doi: 10.1109/JSTSP.2013.2287471 – ident: ref1 doi: 10.1109/TIM.2019.2942171 |
| SSID | ssj0029032 |
| Score | 2.397999 |
| Snippet | Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 219 |
| SubjectTerms | Attenuation Calibration Convolution convolutional neural network Image classification Image reconstruction multi-task learning Noise level Noise levels Noise measurement Radio tomographic imaging Signal strength Target detection Tomography variational autoencoder Wireless networks |
| Title | Designing Multi-Task Convolutional Variational Autoencoder for Radio Tomographic Imaging |
| URI | https://ieeexplore.ieee.org/document/9435803 https://www.proquest.com/docview/2616721960 |
| Volume | 69 |
| WOSCitedRecordID | wos000739632700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029032 issn: 1549-7747 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED624YM--GuK0yl58E27tU3aNI9jOhzIEJ1jbyVNMhi6VrZuf79J2pWBIviWhwTCXZK77y73HcBtxDlLoih0ImKiVSFJHK4i6SQ48LCn9Ito67gnz3Q0iqZT9lKD-6oWRillP5-pjhnaXL7MxNqEyrqMmKQdrkOd0rCo1arAFXNtMzLDOKY9RkK3BTIu6477b8OhhoK-18HGAhqCpx0jZLuq_HiKrX0ZHP1vZ8dwWPqRqFco_gRqKj2Fgx12wSZMH-zvDD1GtszWGfPVB-pn6aY8bnr9REPlMhyIeus8M7SWUi2RdmXRK5fzDI2zRcFqPRdouLA9jc7gffA47j85ZSMFR_gsyB3KaeLSmdK-ntDuIU9CwpKAce28JRQTF0tvhj1JFMHKk64gnEYenblK32gZugyfQyPNUnUBaIZ5gAMRchxw4pscIBV-oKhkRrlMtsDbSjYWJcu4aXbxGVu04bLYaiM22ohLbbTgrlrzVXBs_Dm7aeRfzSxF34L2VoFxeQ1XsYaHoYa4GqVd_r7qCvZ9U89gYyptaOTLtbqGPbHJ56vljT1h32ZuzFk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDb7E-c_Cma7Ob7GZzLNXSYi2ia-ltySYpFG1X-vr9Jum2CIrgLYcEQr4kM98k8w3AdSwEz-I48mJqo1URzTyhY-VlJPSJr82N6PK4u23W6cS9Hn8uwe0qF0Zr7T6f6TvbdG_5KpczGyqrcmof7cgarIeUBniRrbWiVxy7cmRWc8z4jJQtU2Qwryb111bLkMHAvyPWBlqJp29myNVV-XEZOwvT2P3f3PZgp_AkUW0B_T6U9OgAtr_pCx5C7979zzBt5BJtvURM3lE9H82LDWfGdw1ZLgKCqDab5lbYUukxMs4sehFqkKMkHy50rQcStYauqtERvDUeknrTK0opeDLg4dRjgmWY9bXx9qRxEEUWUZ6FXBj3LWOEYqL8PvEV1ZRoX2FJBYt91sfanGkVYU6OoTzKR_oEUJ-IkIQyEiQUBgRmGK4MQs0Ut_ByVQF_ubKpLHTGbbmLj9TxDcxTh0Zq0UgLNCpwsxrzuVDZ-LP3oV3_Vc9i6StwvgQwLQ7iJDUEMTIk1_C0099HXcFmM3lqp-1W5_EMtgKb3eAiLOdQno5n-gI25Hw6mIwv3W77AjJTz6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Multi-Task+Convolutional+Variational+Autoencoder+for+Radio+Tomographic+Imaging&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Wu%2C+Hongzhuang&rft.au=Ma%2C+Xiaoli&rft.au=Liu%2C+Songyong&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=69&rft.issue=1&rft.spage=219&rft_id=info:doi/10.1109%2FTCSII.2021.3081997&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon |