Designing Multi-Task Convolutional Variational Autoencoder for Radio Tomographic Imaging

Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Vol. 69; no. 1; pp. 219 - 223
Main Authors: Wu, Hongzhuang, Ma, Xiaoli, Liu, Songyong
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1549-7747, 1558-3791
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to realize RTI. The presented model is trained end-to-end to denoise the RSS measurements, reconstruct the static tomographic images, estimate the parameters of the wireless network, and classify the measurement noise level, simultaneously. The multi-task variational learning strategy is able to improve the generalization of the model. Numerical experiments demonstrate the efficacy of our RTI method.
AbstractList Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to realize RTI. The presented model is trained end-to-end to denoise the RSS measurements, reconstruct the static tomographic images, estimate the parameters of the wireless network, and classify the measurement noise level, simultaneously. The multi-task variational learning strategy is able to improve the generalization of the model. Numerical experiments demonstrate the efficacy of our RTI method.
Author Ma, Xiaoli
Liu, Songyong
Wu, Hongzhuang
Author_xml – sequence: 1
  givenname: Hongzhuang
  orcidid: 0000-0001-6024-0450
  surname: Wu
  fullname: Wu, Hongzhuang
  email: w_cumt@outlook.com
  organization: School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Xiaoli
  orcidid: 0000-0002-3076-2589
  surname: Ma
  fullname: Ma, Xiaoli
  email: xiaoli@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Songyong
  orcidid: 0000-0002-2801-7969
  surname: Liu
  fullname: Liu, Songyong
  email: lsycumt@163.com
  organization: School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
BookMark eNp9kMtOwzAQRS1UJNrCD8AmEuuU8SNxvKzKK1IREgTEznISJ7ikcbETJP6e9CEWLFjNXcy5mjkTNGptqxE6xzDDGMRVtnhO0xkBgmcUEiwEP0JjHEVJSLnAo21mIuSc8RM08X4FQARQMkZv19qbujVtHTz0TWfCTPmPYGHbL9v0nbGtaoJX5Yw65HnfWd0WttQuqKwLnlRpbJDZta2d2rybIkjXqh7qTtFxpRqvzw5zil5ub7LFfbh8vEsX82VYEBF1IVc8B15pwXkBBFQeM5FHQmFBc04Z0BJXFJdMM6pxCQVTPMG8Ag2MlDEIOkWX-96Ns5-99p1c2d4Np3pJYhxzgkUMw1ay3yqc9d7pSham2_3UOWUaiUFuPcqdR7n1KA8eB5T8QTfOrJX7_h-62ENGa_0LCEajBCj9AcMrgKE
CODEN ITCSFK
CitedBy_id crossref_primary_10_1109_JSEN_2022_3195038
crossref_primary_10_1109_LCOMM_2023_3272841
crossref_primary_10_1109_TCSII_2023_3269051
crossref_primary_10_1038_s41598_025_99694_2
crossref_primary_10_1109_TII_2021_3123546
crossref_primary_10_1109_LSP_2022_3220149
crossref_primary_10_1109_TVT_2024_3418876
Cites_doi 10.1109/CISS48834.2020.1570617238
10.1109/TMC.2009.174
10.1109/AGENTS.2017.8015323
10.1109/TCSII.2020.3039526
10.1109/TWC.2016.2585141
10.1016/j.neucom.2018.11.106
10.1109/TSP.2018.2799169
10.1109/TSP.2020.3003130
10.1109/TVT.2016.2635161
10.1109/JSTSP.2013.2287471
10.1109/TIM.2019.2942171
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSII.2021.3081997
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3791
EndPage 223
ExternalDocumentID 10_1109_TCSII_2021_3081997
9435803
Genre orig-research
GrantInformation_xml – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  funderid: 10.13039/501100012246
– fundername: China Scholarship Council
  grantid: 201806420061
  funderid: 10.13039/501100004543
GroupedDBID 0R~
29I
4.4
5VS
6IK
6J9
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-7a7b07fe977c020ab649b59a193b73403d1f31d4e43e1d0c4a7817f0e042d6093
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000739632700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-7747
IngestDate Sun Jun 29 16:17:36 EDT 2025
Sat Nov 29 02:23:15 EST 2025
Tue Nov 18 22:28:57 EST 2025
Wed Aug 27 03:03:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-7a7b07fe977c020ab649b59a193b73403d1f31d4e43e1d0c4a7817f0e042d6093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3076-2589
0000-0002-2801-7969
0000-0001-6024-0450
PQID 2616721960
PQPubID 85412
PageCount 5
ParticipantIDs proquest_journals_2616721960
ieee_primary_9435803
crossref_citationtrail_10_1109_TCSII_2021_3081997
crossref_primary_10_1109_TCSII_2021_3081997
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. II, Express briefs
PublicationTitleAbbrev TCSII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Doersch (ref12) 2016
ref11
ref10
ref2
ref1
ref8
Kingma (ref14) 2013
ref7
ref9
ref4
ref3
ref6
Ruder (ref13) 2017
ref5
References_xml – ident: ref8
  doi: 10.1109/CISS48834.2020.1570617238
– volume-title: Auto-encoding variational Bayes
  year: 2013
  ident: ref14
– ident: ref2
  doi: 10.1109/TMC.2009.174
– volume-title: An overview of multi-task learning in deep neural networks
  year: 2017
  ident: ref13
– ident: ref3
  doi: 10.1109/AGENTS.2017.8015323
– ident: ref10
  doi: 10.1109/TCSII.2020.3039526
– ident: ref5
  doi: 10.1109/TWC.2016.2585141
– ident: ref9
  doi: 10.1016/j.neucom.2018.11.106
– ident: ref6
  doi: 10.1109/TSP.2018.2799169
– volume-title: Tutorial on variational autoencoders
  year: 2016
  ident: ref12
– ident: ref7
  doi: 10.1109/TSP.2020.3003130
– ident: ref11
  doi: 10.1109/TVT.2016.2635161
– ident: ref4
  doi: 10.1109/JSTSP.2013.2287471
– ident: ref1
  doi: 10.1109/TIM.2019.2942171
SSID ssj0029032
Score 2.397999
Snippet Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 219
SubjectTerms Attenuation
Calibration
Convolution
convolutional neural network
Image classification
Image reconstruction
multi-task learning
Noise level
Noise levels
Noise measurement
Radio tomographic imaging
Signal strength
Target detection
Tomography
variational autoencoder
Wireless networks
Title Designing Multi-Task Convolutional Variational Autoencoder for Radio Tomographic Imaging
URI https://ieeexplore.ieee.org/document/9435803
https://www.proquest.com/docview/2616721960
Volume 69
WOSCitedRecordID wos000739632700048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029032
  issn: 1549-7747
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAH32J9kYM3XU2a7KY5SrXYi4hW6W3Ja6Fou9LX73eSbougCN4Cm4ElXyaZL8l8A3ChmlpQw0XCnfCJ8EWRKOt4YluCex6sjI3FJuTjY6vfV081uFrlwnjv4-Mzfx2a8S7flXYWjspulAiXdnwN1qTMFrlaK3KlaCxGFhTHMGIUcpkgQ9VNr_3S7SIVbLJrHnbAIPD0bROKVVV-LMVxf-ls_-_PdmCriiPJ7QL4Xaj50R5sflMX3If-XXydgW0S02yTnp68k3Y5mlfTDe3fkCpXx4HkdjYtg6yl82OCoSx51m5Qkl45XKhaDyzpDmNNowN47dz32g9JVUghsU2VThOppaGy8BjrWQwPtcmEMqnSGLwZyQXljhWcIViID3PUCi1bTBbUo0e7jCp-CPVROfJHQFxmJBNoyFP8yIxJ01RazSz6dktq3wC2HNncVirjodjFRx7ZBlV5RCMPaOQVGg24XNl8LjQ2_uy9H8Z_1bMa-gacLgHMKzec5EgPM6S4yNKOf7c6gY1myGeIZyqnUJ-OZ_4M1u18OpiMz-MM-wIpwc20
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6lgFQ40AcgAhR86K3dYK-9cXxEAZSINKrKFuW28mulqCWL8uD3M3Y2ERIIiZul9Ugrfx57PtvzDcB3lWpBDRcJd8Inwpdloqzjie0I7nmwMjYWm5DDYWc0Ur8b8HOdC-O9j4_PfCs0412-q-wiHJWdKxEu7fgH2MyESOkyW2tNrxSN5ciC5hjGjEKuUmSoOs-7t_0-ksGUtXjYA4PE07NtKNZVebEYxx3m-tP7_u0z7NaRJLlYQv8FGn7yFXae6Qvuwegyvs_ANomJtkmuZ_9It5o81hMO7e-QLNcHguRiMa-CsKXzU4LBLPmj3bgieXW_1LUeW9K_j1WN9uHv9VXe7SV1KYXEpiqbJ1JLQ2XpMdqzGCBq0xbKZEpj-GYkF5Q7VnKGcCFCzFErtOwwWVKPPu3aVPED2JhUE38IxLWNZAINeYYfmTFZlkmrmUXv7kjtm8BWI1vYWmc8lLv4X0S-QVUR0SgCGkWNRhN-rG0eliobb_beC-O_7lkPfRNOVgAWtSPOCiSIbSS5yNOOXrc6g4-9_NegGPSHN8ewnYbshnjCcgIb8-nCf4Mt-zgfz6ancbY9AQjI0Ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Multi-Task+Convolutional+Variational+Autoencoder+for+Radio+Tomographic+Imaging&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Wu%2C+Hongzhuang&rft.au=Ma%2C+Xiaoli&rft.au=Liu%2C+Songyong&rft.date=2022-01-01&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=69&rft.issue=1&rft.spage=219&rft.epage=223&rft_id=info:doi/10.1109%2FTCSII.2021.3081997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSII_2021_3081997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon