Designing Multi-Task Convolutional Variational Autoencoder for Radio Tomographic Imaging

Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 69; číslo 1; s. 219 - 223
Hlavní autoři: Wu, Hongzhuang, Ma, Xiaoli, Liu, Songyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Radio tomographic imaging (RTI) emerges to model the environment and detect the passive targets by a wireless network. In this work, the received signal strength (RSS) measurements are collected from an uncalibrated network, and a multi-task convolutional variational autoencoder model is proposed to realize RTI. The presented model is trained end-to-end to denoise the RSS measurements, reconstruct the static tomographic images, estimate the parameters of the wireless network, and classify the measurement noise level, simultaneously. The multi-task variational learning strategy is able to improve the generalization of the model. Numerical experiments demonstrate the efficacy of our RTI method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2021.3081997