p-Edge/vertex-connected vertex cover: Parameterized and approximation algorithms
We introduce and study two natural generalizations of the Connected Vertex Cover (VC) problem: the p-Edge-Connected and p-Vertex-Connected VC problem (where p≥2 is a fixed integer). We obtain an 2O(pk)nO(1)-time algorithm for p-Edge-Connected VC and an 2O(k2)nO(1)-time algorithm for p-Vertex-Connect...
Gespeichert in:
| Veröffentlicht in: | Journal of computer and system sciences Jg. 133; S. 23 - 40 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.05.2023
|
| Schlagworte: | |
| ISSN: | 0022-0000, 1090-2724 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We introduce and study two natural generalizations of the Connected Vertex Cover (VC) problem: the p-Edge-Connected and p-Vertex-Connected VC problem (where p≥2 is a fixed integer). We obtain an 2O(pk)nO(1)-time algorithm for p-Edge-Connected VC and an 2O(k2)nO(1)-time algorithm for p-Vertex-Connected VC. Thus, like Connected VC, both constrained VC problems are FPT. Furthermore, like Connected VC, neither problem admits a polynomial kernel unless NP ⊆ coNP/poly, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. Finally, we describe a 2(p+1)-approximation algorithm for the p-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning p-vertex/edge-connected subgraphs of a p-vertex/edge-connected graph by Nishizeki and Poljak (1994) [30] and Nagamochi and Ibaraki (1992) [27]. |
|---|---|
| ISSN: | 0022-0000 1090-2724 |
| DOI: | 10.1016/j.jcss.2022.11.002 |