Large-Scale Video Retrieval Using Image Queries

Retrieving videos from large repositories using image queries is important for many applications, such as brand monitoring or content linking. We introduce a new retrieval architecture, in which the image query can be compared directly with database videos-significantly improving retrieval scalabili...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems for video technology Ročník 28; číslo 6; s. 1406 - 1420
Hlavní autoři: Araujo, Andre, Girod, Bernd
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1051-8215, 1558-2205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Retrieving videos from large repositories using image queries is important for many applications, such as brand monitoring or content linking. We introduce a new retrieval architecture, in which the image query can be compared directly with database videos-significantly improving retrieval scalability compared with a baseline system that searches the database on a video frame level. Matching an image to a video is an inherently asymmetric problem. We propose an asymmetric comparison technique for Fisher vectors and systematically explore query or database items with varying amounts of clutter, showing the benefits of the proposed technique. We then propose novel video descriptors that can be compared directly with image descriptors. We start by constructing Fisher vectors for video segments, by exploring different aggregation techniques. For a database of lecture videos, such methods obtain a two orders of magnitude compression gain with respect to a frame-based scheme, with no loss in retrieval accuracy. Then, we consider the design of video descriptors, which combine Fisher embedding with hashing techniques, in a flexible framework based on Bloom filters. Large-scale experiments using three datasets show that this technique enables faster and more memory-efficient retrieval, compared with a frame-based method, with similar accuracy. The proposed techniques are further compared against pre-trained convolutional neural network features, outperforming them on three datasets by a substantial margin.
AbstractList Retrieving videos from large repositories using image queries is important for many applications, such as brand monitoring or content linking. We introduce a new retrieval architecture, in which the image query can be compared directly with database videos-significantly improving retrieval scalability compared with a baseline system that searches the database on a video frame level. Matching an image to a video is an inherently asymmetric problem. We propose an asymmetric comparison technique for Fisher vectors and systematically explore query or database items with varying amounts of clutter, showing the benefits of the proposed technique. We then propose novel video descriptors that can be compared directly with image descriptors. We start by constructing Fisher vectors for video segments, by exploring different aggregation techniques. For a database of lecture videos, such methods obtain a two orders of magnitude compression gain with respect to a frame-based scheme, with no loss in retrieval accuracy. Then, we consider the design of video descriptors, which combine Fisher embedding with hashing techniques, in a flexible framework based on Bloom filters. Large-scale experiments using three datasets show that this technique enables faster and more memory-efficient retrieval, compared with a frame-based method, with similar accuracy. The proposed techniques are further compared against pre-trained convolutional neural network features, outperforming them on three datasets by a substantial margin.
Author Araujo, Andre
Girod, Bernd
Author_xml – sequence: 1
  givenname: Andre
  orcidid: 0000-0002-4214-6185
  surname: Araujo
  fullname: Araujo, Andre
  email: andrearaujo@google.com
  organization: Google Inc., Mountain View, CA, USA
– sequence: 2
  givenname: Bernd
  surname: Girod
  fullname: Girod, Bernd
  email: bgirod@stanford.edu
  organization: Department of Electrical Engineering, Stanford University, Stanford, CA, USA
BookMark eNp9kMtKw0AUhgepYFt9Ad0EXKedS-aSpRQvhYJoL9vhNHNSpqRJnUkF397UFhcuXJ2fw_-dA9-A9OqmRkJuGR0xRvPxYjJfLUacMj3iSmnN6AXpMylNyjmVvS5TyVLDmbwigxi3lLLMZLpPxjMIG0znBVSYrLzDJnnHNnj8hCpZRl9vkukONpi8HbDbxmtyWUIV8eY8h2T59LiYvKSz1-fp5GGWFjyXbap1ngOVhWMOKUiBuTEyE06pdaFMyUSpQQKgUwh8vc6dk6XiIJkrhUJuxJDcn-7uQ_NxwNjabXMIdffScqYzKbTIRdcyp1YRmhgDlrbwLbS-qdsAvrKM2qMe-6PHHvXYs54O5X_QffA7CF__Q3cnyCPiL6CNZFRr8Q1M8XHu
CODEN ITCTEM
CitedBy_id crossref_primary_10_1007_s13735_019_00172_z
crossref_primary_10_1016_j_eswa_2024_125873
crossref_primary_10_1109_TCSVT_2021_3075470
crossref_primary_10_3233_JIFS_220673
crossref_primary_10_1109_TCSVT_2018_2881177
crossref_primary_10_3390_mi13091413
crossref_primary_10_1109_TCSVT_2022_3225549
crossref_primary_10_1109_TCSVT_2024_3517664
crossref_primary_10_1007_s11042_018_5728_8
crossref_primary_10_1007_s11042_020_08668_1
crossref_primary_10_3390_app8101735
crossref_primary_10_1109_TIP_2023_3278474
crossref_primary_10_1007_s11042_021_10829_9
crossref_primary_10_1016_j_patrec_2019_03_015
crossref_primary_10_1109_JPROC_2024_3525147
crossref_primary_10_1109_TCSVT_2020_2974768
crossref_primary_10_1093_comjnl_bxz113
crossref_primary_10_1109_TCSVT_2020_3014491
crossref_primary_10_1109_TIP_2020_3048680
crossref_primary_10_1109_TCSVT_2022_3174136
crossref_primary_10_1016_j_ijar_2025_109383
crossref_primary_10_1109_TCSVT_2020_2992276
crossref_primary_10_1016_j_eswa_2022_116967
crossref_primary_10_1111_coin_12275
crossref_primary_10_1016_j_asoc_2020_106782
crossref_primary_10_1109_TCSVT_2020_3017344
crossref_primary_10_3233_IDT_220303
crossref_primary_10_1109_TCSVT_2019_2900171
crossref_primary_10_1109_TCSVT_2023_3347970
crossref_primary_10_1109_TCSVT_2023_3257193
crossref_primary_10_1007_s11042_022_13086_6
crossref_primary_10_1109_TCSVT_2020_3027001
crossref_primary_10_1109_TCYB_2018_2833843
crossref_primary_10_1007_s12046_020_01494_z
crossref_primary_10_1002_eng2_12273
crossref_primary_10_4018_IJKSS_305480
crossref_primary_10_1016_j_imavis_2024_105168
crossref_primary_10_1111_phor_12427
crossref_primary_10_1109_TCSVT_2020_3048945
crossref_primary_10_1007_s12652_020_02190_w
crossref_primary_10_1109_TCSVT_2022_3150959
crossref_primary_10_3390_app12031502
crossref_primary_10_1109_TDSC_2019_2923653
crossref_primary_10_1109_JIOT_2025_3566086
crossref_primary_10_1109_TCSVT_2017_2771332
crossref_primary_10_1002_cpe_6927
crossref_primary_10_1016_j_patcog_2022_108807
crossref_primary_10_1109_TMM_2023_3321503
Cites_doi 10.1007/978-3-319-10590-1_38
10.1145/1743384.1743475
10.1109/MSP.2011.940882
10.1145/362686.362692
10.1145/2733373.2806228
10.1109/CVPR.2014.269
10.1109/TPAMI.2011.235
10.1137/1.9781611972863.4
10.1109/TMM.2015.2427744
10.1109/ICCV.2013.214
10.1145/509961.509965
10.1109/ICIP.2014.7025623
10.1145/1943552.1943568
10.1109/CVPR.2003.1211489
10.1017/CBO9781139924801
10.1145/2713168.2713197
10.1109/ICCV.2003.1238663
10.1080/15427951.2004.10129096
10.1109/TPAMI.2014.2346201
10.1109/CVPR.2007.383266
10.1007/978-3-540-24671-8_7
10.1023/B:VISI.0000027790.02288.f2
10.1109/CVPR.2011.5995610
10.1007/978-3-540-88682-2_24
10.1006/cviu.1997.0628
10.1145/1873951.1874293
10.1109/CVPR.2014.250
10.1109/TMM.2014.2329648
10.1145/1148170.1148222
10.1109/CVPR.2009.5206609
10.1109/TIP.2014.2331136
10.1145/2324796.2324856
10.1109/ICASSP.2014.6854414
10.1109/CVPRW.2014.131
10.1023/B:VISI.0000029664.99615.94
10.1109/MMUL.2013.46
10.1109/TIP.2015.2500034
10.1109/TCSVT.2004.842603
10.1109/MMUL.2013.66
10.1109/CVPR.2010.5540009
10.1016/j.patrec.2010.04.004
10.1109/ICIP.2015.7351054
10.1109/TMM.2010.2046265
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2017.2667710
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1420
ExternalDocumentID 10_1109_TCSVT_2017_2667710
7851077
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-7799a05cd1de0a53e988543d66bc68f13f7a5aaed6ea2bb9dd5f62a51df36e283
IEDL.DBID RIE
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437398500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sun Nov 09 06:43:45 EST 2025
Tue Nov 18 22:32:14 EST 2025
Sat Nov 29 01:44:10 EST 2025
Wed Aug 27 02:48:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-7799a05cd1de0a53e988543d66bc68f13f7a5aaed6ea2bb9dd5f62a51df36e283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4214-6185
OpenAccessLink https://ieeexplore.ieee.org/document/7851077
PQID 2174537393
PQPubID 85433
PageCount 15
ParticipantIDs proquest_journals_2174537393
crossref_citationtrail_10_1109_TCSVT_2017_2667710
crossref_primary_10_1109_TCSVT_2017_2667710
ieee_primary_7851077
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref15
ref14
ref53
le (ref20) 0
ref52
ref11
ref10
(ref5) 2016
ref17
ref16
ref18
krizhevsky (ref54) 2012
ref51
ref50
jaakkola (ref28) 1998
ref46
ref45
ref48
arandjelovi? (ref32) 2013
ref47
ref42
ref41
ref44
ref49
babenko (ref56) 2015
ref7
ref9
ref4
ref3
ref40
ref35
ref34
ref37
ballas (ref24) 0
ref36
ref31
zheng (ref12) 2016
ref30
ref33
he (ref2) 2012
shi (ref43) 2015
ref1
ref39
ref38
over (ref19) 2010
araujo (ref8) 2016
ref23
ref26
ref25
ref22
ref21
simonyan (ref55) 2014
(ref6) 2016
ref27
ref29
References_xml – ident: ref52
  doi: 10.1007/978-3-319-10590-1_38
– start-page: 487
  year: 1998
  ident: ref28
  article-title: Exploiting generative models in discriminative classifiers
  publication-title: Proc NIPS
– ident: ref37
  doi: 10.1145/1743384.1743475
– ident: ref4
  doi: 10.1109/MSP.2011.940882
– ident: ref44
  doi: 10.1145/362686.362692
– ident: ref16
  doi: 10.1145/2733373.2806228
– ident: ref47
  doi: 10.1109/CVPR.2014.269
– year: 2016
  ident: ref8
  publication-title: Large-Scale Query-by-Image Video Retrieval Using Bloom Filters
– ident: ref27
  doi: 10.1109/TPAMI.2011.235
– ident: ref46
  doi: 10.1137/1.9781611972863.4
– ident: ref14
  doi: 10.1109/TMM.2015.2427744
– year: 2016
  ident: ref12
  publication-title: SIFT meets CNN A decade survey of instance retrieval
– start-page: 1578
  year: 2013
  ident: ref32
  article-title: All about VLAD
  publication-title: Proc CVPR
– start-page: 605
  year: 2015
  ident: ref43
  article-title: Early burst detection for memory-efficient image retrieval
  publication-title: Proc CVPR
– start-page: 1269
  year: 2015
  ident: ref56
  article-title: Aggregating local deep features for image retrieval
  publication-title: Proc ICCV
– start-page: 1
  year: 0
  ident: ref20
  article-title: National Institute of informatics, Japan at TRECVID 2011
  publication-title: Proc TRECVID
– ident: ref26
  doi: 10.1109/ICCV.2013.214
– ident: ref48
  doi: 10.1145/509961.509965
– ident: ref22
  doi: 10.1109/ICIP.2014.7025623
– year: 2014
  ident: ref55
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– ident: ref35
  doi: 10.1145/1943552.1943568
– ident: ref42
  doi: 10.1109/CVPR.2003.1211489
– ident: ref50
  doi: 10.1017/CBO9781139924801
– ident: ref23
  doi: 10.1145/2713168.2713197
– start-page: 1097
  year: 2012
  ident: ref54
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc NIPS
– ident: ref17
  doi: 10.1109/ICCV.2003.1238663
– ident: ref45
  doi: 10.1080/15427951.2004.10129096
– ident: ref11
  doi: 10.1109/TPAMI.2014.2346201
– ident: ref29
  doi: 10.1109/CVPR.2007.383266
– start-page: 1
  year: 0
  ident: ref24
  article-title: IRIM at TRECVID 2014: Semantic indexing and instance search
  publication-title: Proc TRECVID
– ident: ref18
  doi: 10.1007/978-3-540-24671-8_7
– ident: ref38
  doi: 10.1023/B:VISI.0000027790.02288.f2
– ident: ref3
  doi: 10.1109/CVPR.2011.5995610
– ident: ref36
  doi: 10.1007/978-3-540-88682-2_24
– ident: ref41
  doi: 10.1006/cviu.1997.0628
– ident: ref1
  doi: 10.1145/1873951.1874293
– year: 2016
  ident: ref6
  publication-title: Google Goggles
– ident: ref9
  doi: 10.1109/CVPR.2014.250
– ident: ref10
  doi: 10.1109/TMM.2014.2329648
– ident: ref49
  doi: 10.1145/1148170.1148222
– ident: ref30
  doi: 10.1109/CVPR.2009.5206609
– start-page: 3005
  year: 2012
  ident: ref2
  article-title: Mobile product search with Bag of Hash Bits and boundary reranking
  publication-title: Proc CVPR
– ident: ref13
  doi: 10.1109/TIP.2014.2331136
– ident: ref21
  doi: 10.1145/2324796.2324856
– ident: ref25
  doi: 10.1109/ICASSP.2014.6854414
– ident: ref53
  doi: 10.1109/CVPRW.2014.131
– start-page: 52
  year: 2010
  ident: ref19
  article-title: TRECVID 2014-An overview of the goals, tasks, data, evaluation mechanisms and metrics
  publication-title: Proc TRECVID
– ident: ref39
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref34
  doi: 10.1109/MMUL.2013.46
– ident: ref57
  doi: 10.1109/TIP.2015.2500034
– year: 2016
  ident: ref5
  publication-title: Amazon Flow
– ident: ref40
  doi: 10.1109/TCSVT.2004.842603
– ident: ref33
  doi: 10.1109/MMUL.2013.66
– ident: ref31
  doi: 10.1109/CVPR.2010.5540009
– ident: ref51
  doi: 10.1016/j.patrec.2010.04.004
– ident: ref7
  doi: 10.1109/ICIP.2015.7351054
– ident: ref15
  doi: 10.1109/TMM.2010.2046265
SSID ssj0014847
Score 2.5237775
Snippet Retrieving videos from large repositories using image queries is important for many applications, such as brand monitoring or content linking. We introduce a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1406
SubjectTerms Artificial neural networks
Bloom filter
Clutter
Datasets
Electronic mail
fisher vector
Image segmentation
Indexes
large-scale
Queries
query-by-image
Repositories
Retrieval
Search problems
video retrieval
Visual databases
Visualization
Title Large-Scale Video Retrieval Using Image Queries
URI https://ieeexplore.ieee.org/document/7851077
https://www.proquest.com/docview/2174537393
Volume 28
WOSCitedRecordID wos000437398500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB52xYMefK3i-qIHb1q3aZrXURYXBVl8rOKtpM0EBN2Vffj7TdJuERTBWw5JKd8kmS_JzHwAp1ZyYxxRjbVmGGcEeaxKW8Qk1YQybstE2iA2IYZD-fKi7lpw3uTCIGIIPsML3wxv-WZSLvxVWc8LySdCtKEtBK9ytZoXg0wGMTFHF0gsnR9bJsgkqjfqPz6PfBSXuHDuSAifLfvNCQVVlR9bcfAvg83__dkWbNQ8MrqsDL8NLRzvwPq36oId6N36KO_40VkBo-dXg5PoIehnuckVhVCB6ObdbSfR_cJXO57twtPgatS_jmt9hLhMFZs7YqyUTlhpiMFEM4pKSpZRw3lRcmkJtUIzrdFw1GlRKGcUy1PNiLGUo-MVe7AynoxxHyLOtEDH_nhBbGapLjKSWm0lpcYmaUG6QJaA5WVdPNxrWLzl4RCRqDyAnHuQ8xrkLpw1Yz6q0hl_9u54WJueNaJdOFraJa9X1yz3xyhGfS2_g99HHcKa-7asQrqOYGU-XeAxrJaf89fZ9CRMnC_qm79Z
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFdSD32K16h686drNZpNNjiKWirX4UaW3JbuZgKCt2Nbfb5LdFkERvOWQsMubJPOSzMwDODGCa22JaqgUwzAhyENZmDwksSKUcVNEwnixibTXE4OBvKvB2TwXBhF98Bmeu6Z_y9ejYuquylpOSD5K0wVYZEkSR2W21vzNIBFeTswSBhIK68lmKTKRbPUvH5_7Lo4rPbcOKU1dvuw3N-R1VX5sxt7DtNf_928bsFYxyeCiNP0m1HC4Bavf6gtuQ6vr4rzDR2sHDJ5fNI6CB6-gZadX4IMFgus3u6EE91NX73i8A0_tq_5lJ6wUEsIilmxiqbGUKmKFJhojxShKIVhCNed5wYUh1KSKKYWao4rzXFqzGB4rRrShHC2z2IX6cDTEPQg4Uyla_sdzYhJDVZ6Q2CgjKNUminPSADIDLCuq8uFOxeI188eISGYe5MyBnFUgN-B0Pua9LJ7xZ-9tB-u8Z4VoA5ozu2TV-hpn7iDFqKvmt__7qGNY7vRvu1n3undzACv2O6IM8GpCffIxxUNYKj4nL-OPIz-JvgAM_8Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Video+Retrieval+Using+Image+Queries&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Araujo%2C+Andre&rft.au=Girod%2C+Bernd&rft.date=2018-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=28&rft.issue=6&rft.spage=1406&rft_id=info:doi/10.1109%2FTCSVT.2017.2667710&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon