Large-Scale Video Retrieval Using Image Queries
Retrieving videos from large repositories using image queries is important for many applications, such as brand monitoring or content linking. We introduce a new retrieval architecture, in which the image query can be compared directly with database videos-significantly improving retrieval scalabili...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems for video technology Ročník 28; číslo 6; s. 1406 - 1420 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1051-8215, 1558-2205 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Retrieving videos from large repositories using image queries is important for many applications, such as brand monitoring or content linking. We introduce a new retrieval architecture, in which the image query can be compared directly with database videos-significantly improving retrieval scalability compared with a baseline system that searches the database on a video frame level. Matching an image to a video is an inherently asymmetric problem. We propose an asymmetric comparison technique for Fisher vectors and systematically explore query or database items with varying amounts of clutter, showing the benefits of the proposed technique. We then propose novel video descriptors that can be compared directly with image descriptors. We start by constructing Fisher vectors for video segments, by exploring different aggregation techniques. For a database of lecture videos, such methods obtain a two orders of magnitude compression gain with respect to a frame-based scheme, with no loss in retrieval accuracy. Then, we consider the design of video descriptors, which combine Fisher embedding with hashing techniques, in a flexible framework based on Bloom filters. Large-scale experiments using three datasets show that this technique enables faster and more memory-efficient retrieval, compared with a frame-based method, with similar accuracy. The proposed techniques are further compared against pre-trained convolutional neural network features, outperforming them on three datasets by a substantial margin. |
|---|---|
| AbstractList | Retrieving videos from large repositories using image queries is important for many applications, such as brand monitoring or content linking. We introduce a new retrieval architecture, in which the image query can be compared directly with database videos-significantly improving retrieval scalability compared with a baseline system that searches the database on a video frame level. Matching an image to a video is an inherently asymmetric problem. We propose an asymmetric comparison technique for Fisher vectors and systematically explore query or database items with varying amounts of clutter, showing the benefits of the proposed technique. We then propose novel video descriptors that can be compared directly with image descriptors. We start by constructing Fisher vectors for video segments, by exploring different aggregation techniques. For a database of lecture videos, such methods obtain a two orders of magnitude compression gain with respect to a frame-based scheme, with no loss in retrieval accuracy. Then, we consider the design of video descriptors, which combine Fisher embedding with hashing techniques, in a flexible framework based on Bloom filters. Large-scale experiments using three datasets show that this technique enables faster and more memory-efficient retrieval, compared with a frame-based method, with similar accuracy. The proposed techniques are further compared against pre-trained convolutional neural network features, outperforming them on three datasets by a substantial margin. |
| Author | Araujo, Andre Girod, Bernd |
| Author_xml | – sequence: 1 givenname: Andre orcidid: 0000-0002-4214-6185 surname: Araujo fullname: Araujo, Andre email: andrearaujo@google.com organization: Google Inc., Mountain View, CA, USA – sequence: 2 givenname: Bernd surname: Girod fullname: Girod, Bernd email: bgirod@stanford.edu organization: Department of Electrical Engineering, Stanford University, Stanford, CA, USA |
| BookMark | eNp9kMtKw0AUhgepYFt9Ad0EXKedS-aSpRQvhYJoL9vhNHNSpqRJnUkF397UFhcuXJ2fw_-dA9-A9OqmRkJuGR0xRvPxYjJfLUacMj3iSmnN6AXpMylNyjmVvS5TyVLDmbwigxi3lLLMZLpPxjMIG0znBVSYrLzDJnnHNnj8hCpZRl9vkukONpi8HbDbxmtyWUIV8eY8h2T59LiYvKSz1-fp5GGWFjyXbap1ngOVhWMOKUiBuTEyE06pdaFMyUSpQQKgUwh8vc6dk6XiIJkrhUJuxJDcn-7uQ_NxwNjabXMIdffScqYzKbTIRdcyp1YRmhgDlrbwLbS-qdsAvrKM2qMe-6PHHvXYs54O5X_QffA7CF__Q3cnyCPiL6CNZFRr8Q1M8XHu |
| CODEN | ITCTEM |
| CitedBy_id | crossref_primary_10_1007_s13735_019_00172_z crossref_primary_10_1016_j_eswa_2024_125873 crossref_primary_10_1109_TCSVT_2021_3075470 crossref_primary_10_3233_JIFS_220673 crossref_primary_10_1109_TCSVT_2018_2881177 crossref_primary_10_3390_mi13091413 crossref_primary_10_1109_TCSVT_2022_3225549 crossref_primary_10_1109_TCSVT_2024_3517664 crossref_primary_10_1007_s11042_018_5728_8 crossref_primary_10_1007_s11042_020_08668_1 crossref_primary_10_3390_app8101735 crossref_primary_10_1109_TIP_2023_3278474 crossref_primary_10_1007_s11042_021_10829_9 crossref_primary_10_1016_j_patrec_2019_03_015 crossref_primary_10_1109_JPROC_2024_3525147 crossref_primary_10_1109_TCSVT_2020_2974768 crossref_primary_10_1093_comjnl_bxz113 crossref_primary_10_1109_TCSVT_2020_3014491 crossref_primary_10_1109_TIP_2020_3048680 crossref_primary_10_1109_TCSVT_2022_3174136 crossref_primary_10_1016_j_ijar_2025_109383 crossref_primary_10_1109_TCSVT_2020_2992276 crossref_primary_10_1016_j_eswa_2022_116967 crossref_primary_10_1111_coin_12275 crossref_primary_10_1016_j_asoc_2020_106782 crossref_primary_10_1109_TCSVT_2020_3017344 crossref_primary_10_3233_IDT_220303 crossref_primary_10_1109_TCSVT_2019_2900171 crossref_primary_10_1109_TCSVT_2023_3347970 crossref_primary_10_1109_TCSVT_2023_3257193 crossref_primary_10_1007_s11042_022_13086_6 crossref_primary_10_1109_TCSVT_2020_3027001 crossref_primary_10_1109_TCYB_2018_2833843 crossref_primary_10_1007_s12046_020_01494_z crossref_primary_10_1002_eng2_12273 crossref_primary_10_4018_IJKSS_305480 crossref_primary_10_1016_j_imavis_2024_105168 crossref_primary_10_1111_phor_12427 crossref_primary_10_1109_TCSVT_2020_3048945 crossref_primary_10_1007_s12652_020_02190_w crossref_primary_10_1109_TCSVT_2022_3150959 crossref_primary_10_3390_app12031502 crossref_primary_10_1109_TDSC_2019_2923653 crossref_primary_10_1109_JIOT_2025_3566086 crossref_primary_10_1109_TCSVT_2017_2771332 crossref_primary_10_1002_cpe_6927 crossref_primary_10_1016_j_patcog_2022_108807 crossref_primary_10_1109_TMM_2023_3321503 |
| Cites_doi | 10.1007/978-3-319-10590-1_38 10.1145/1743384.1743475 10.1109/MSP.2011.940882 10.1145/362686.362692 10.1145/2733373.2806228 10.1109/CVPR.2014.269 10.1109/TPAMI.2011.235 10.1137/1.9781611972863.4 10.1109/TMM.2015.2427744 10.1109/ICCV.2013.214 10.1145/509961.509965 10.1109/ICIP.2014.7025623 10.1145/1943552.1943568 10.1109/CVPR.2003.1211489 10.1017/CBO9781139924801 10.1145/2713168.2713197 10.1109/ICCV.2003.1238663 10.1080/15427951.2004.10129096 10.1109/TPAMI.2014.2346201 10.1109/CVPR.2007.383266 10.1007/978-3-540-24671-8_7 10.1023/B:VISI.0000027790.02288.f2 10.1109/CVPR.2011.5995610 10.1007/978-3-540-88682-2_24 10.1006/cviu.1997.0628 10.1145/1873951.1874293 10.1109/CVPR.2014.250 10.1109/TMM.2014.2329648 10.1145/1148170.1148222 10.1109/CVPR.2009.5206609 10.1109/TIP.2014.2331136 10.1145/2324796.2324856 10.1109/ICASSP.2014.6854414 10.1109/CVPRW.2014.131 10.1023/B:VISI.0000029664.99615.94 10.1109/MMUL.2013.46 10.1109/TIP.2015.2500034 10.1109/TCSVT.2004.842603 10.1109/MMUL.2013.66 10.1109/CVPR.2010.5540009 10.1016/j.patrec.2010.04.004 10.1109/ICIP.2015.7351054 10.1109/TMM.2010.2046265 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCSVT.2017.2667710 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2205 |
| EndPage | 1420 |
| ExternalDocumentID | 10_1109_TCSVT_2017_2667710 7851077 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-7799a05cd1de0a53e988543d66bc68f13f7a5aaed6ea2bb9dd5f62a51df36e283 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437398500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-8215 |
| IngestDate | Sun Nov 09 06:43:45 EST 2025 Tue Nov 18 22:32:14 EST 2025 Sat Nov 29 01:44:10 EST 2025 Wed Aug 27 02:48:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-7799a05cd1de0a53e988543d66bc68f13f7a5aaed6ea2bb9dd5f62a51df36e283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4214-6185 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/7851077 |
| PQID | 2174537393 |
| PQPubID | 85433 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2174537393 crossref_citationtrail_10_1109_TCSVT_2017_2667710 crossref_primary_10_1109_TCSVT_2017_2667710 ieee_primary_7851077 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems for video technology |
| PublicationTitleAbbrev | TCSVT |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref15 ref14 ref53 le (ref20) 0 ref52 ref11 ref10 (ref5) 2016 ref17 ref16 ref18 krizhevsky (ref54) 2012 ref51 ref50 jaakkola (ref28) 1998 ref46 ref45 ref48 arandjelovi? (ref32) 2013 ref47 ref42 ref41 ref44 ref49 babenko (ref56) 2015 ref7 ref9 ref4 ref3 ref40 ref35 ref34 ref37 ballas (ref24) 0 ref36 ref31 zheng (ref12) 2016 ref30 ref33 he (ref2) 2012 shi (ref43) 2015 ref1 ref39 ref38 over (ref19) 2010 araujo (ref8) 2016 ref23 ref26 ref25 ref22 ref21 simonyan (ref55) 2014 (ref6) 2016 ref27 ref29 |
| References_xml | – ident: ref52 doi: 10.1007/978-3-319-10590-1_38 – start-page: 487 year: 1998 ident: ref28 article-title: Exploiting generative models in discriminative classifiers publication-title: Proc NIPS – ident: ref37 doi: 10.1145/1743384.1743475 – ident: ref4 doi: 10.1109/MSP.2011.940882 – ident: ref44 doi: 10.1145/362686.362692 – ident: ref16 doi: 10.1145/2733373.2806228 – ident: ref47 doi: 10.1109/CVPR.2014.269 – year: 2016 ident: ref8 publication-title: Large-Scale Query-by-Image Video Retrieval Using Bloom Filters – ident: ref27 doi: 10.1109/TPAMI.2011.235 – ident: ref46 doi: 10.1137/1.9781611972863.4 – ident: ref14 doi: 10.1109/TMM.2015.2427744 – year: 2016 ident: ref12 publication-title: SIFT meets CNN A decade survey of instance retrieval – start-page: 1578 year: 2013 ident: ref32 article-title: All about VLAD publication-title: Proc CVPR – start-page: 605 year: 2015 ident: ref43 article-title: Early burst detection for memory-efficient image retrieval publication-title: Proc CVPR – start-page: 1269 year: 2015 ident: ref56 article-title: Aggregating local deep features for image retrieval publication-title: Proc ICCV – start-page: 1 year: 0 ident: ref20 article-title: National Institute of informatics, Japan at TRECVID 2011 publication-title: Proc TRECVID – ident: ref26 doi: 10.1109/ICCV.2013.214 – ident: ref48 doi: 10.1145/509961.509965 – ident: ref22 doi: 10.1109/ICIP.2014.7025623 – year: 2014 ident: ref55 publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition – ident: ref35 doi: 10.1145/1943552.1943568 – ident: ref42 doi: 10.1109/CVPR.2003.1211489 – ident: ref50 doi: 10.1017/CBO9781139924801 – ident: ref23 doi: 10.1145/2713168.2713197 – start-page: 1097 year: 2012 ident: ref54 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc NIPS – ident: ref17 doi: 10.1109/ICCV.2003.1238663 – ident: ref45 doi: 10.1080/15427951.2004.10129096 – ident: ref11 doi: 10.1109/TPAMI.2014.2346201 – ident: ref29 doi: 10.1109/CVPR.2007.383266 – start-page: 1 year: 0 ident: ref24 article-title: IRIM at TRECVID 2014: Semantic indexing and instance search publication-title: Proc TRECVID – ident: ref18 doi: 10.1007/978-3-540-24671-8_7 – ident: ref38 doi: 10.1023/B:VISI.0000027790.02288.f2 – ident: ref3 doi: 10.1109/CVPR.2011.5995610 – ident: ref36 doi: 10.1007/978-3-540-88682-2_24 – ident: ref41 doi: 10.1006/cviu.1997.0628 – ident: ref1 doi: 10.1145/1873951.1874293 – year: 2016 ident: ref6 publication-title: Google Goggles – ident: ref9 doi: 10.1109/CVPR.2014.250 – ident: ref10 doi: 10.1109/TMM.2014.2329648 – ident: ref49 doi: 10.1145/1148170.1148222 – ident: ref30 doi: 10.1109/CVPR.2009.5206609 – start-page: 3005 year: 2012 ident: ref2 article-title: Mobile product search with Bag of Hash Bits and boundary reranking publication-title: Proc CVPR – ident: ref13 doi: 10.1109/TIP.2014.2331136 – ident: ref21 doi: 10.1145/2324796.2324856 – ident: ref25 doi: 10.1109/ICASSP.2014.6854414 – ident: ref53 doi: 10.1109/CVPRW.2014.131 – start-page: 52 year: 2010 ident: ref19 article-title: TRECVID 2014-An overview of the goals, tasks, data, evaluation mechanisms and metrics publication-title: Proc TRECVID – ident: ref39 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref34 doi: 10.1109/MMUL.2013.46 – ident: ref57 doi: 10.1109/TIP.2015.2500034 – year: 2016 ident: ref5 publication-title: Amazon Flow – ident: ref40 doi: 10.1109/TCSVT.2004.842603 – ident: ref33 doi: 10.1109/MMUL.2013.66 – ident: ref31 doi: 10.1109/CVPR.2010.5540009 – ident: ref51 doi: 10.1016/j.patrec.2010.04.004 – ident: ref7 doi: 10.1109/ICIP.2015.7351054 – ident: ref15 doi: 10.1109/TMM.2010.2046265 |
| SSID | ssj0014847 |
| Score | 2.5237775 |
| Snippet | Retrieving videos from large repositories using image queries is important for many applications, such as brand monitoring or content linking. We introduce a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1406 |
| SubjectTerms | Artificial neural networks Bloom filter Clutter Datasets Electronic mail fisher vector Image segmentation Indexes large-scale Queries query-by-image Repositories Retrieval Search problems video retrieval Visual databases Visualization |
| Title | Large-Scale Video Retrieval Using Image Queries |
| URI | https://ieeexplore.ieee.org/document/7851077 https://www.proquest.com/docview/2174537393 |
| Volume | 28 |
| WOSCitedRecordID | wos000437398500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB52xYMefK3i-qIHb1q3aZrXURYXBVl8rOKtpM0EBN2Vffj7TdJuERTBWw5JKd8kmS_JzHwAp1ZyYxxRjbVmGGcEeaxKW8Qk1YQybstE2iA2IYZD-fKi7lpw3uTCIGIIPsML3wxv-WZSLvxVWc8LySdCtKEtBK9ytZoXg0wGMTFHF0gsnR9bJsgkqjfqPz6PfBSXuHDuSAifLfvNCQVVlR9bcfAvg83__dkWbNQ8MrqsDL8NLRzvwPq36oId6N36KO_40VkBo-dXg5PoIehnuckVhVCB6ObdbSfR_cJXO57twtPgatS_jmt9hLhMFZs7YqyUTlhpiMFEM4pKSpZRw3lRcmkJtUIzrdFw1GlRKGcUy1PNiLGUo-MVe7AynoxxHyLOtEDH_nhBbGapLjKSWm0lpcYmaUG6QJaA5WVdPNxrWLzl4RCRqDyAnHuQ8xrkLpw1Yz6q0hl_9u54WJueNaJdOFraJa9X1yz3xyhGfS2_g99HHcKa-7asQrqOYGU-XeAxrJaf89fZ9CRMnC_qm79Z |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFdSD32K16h686drNZpNNjiKWirX4UaW3JbuZgKCt2Nbfb5LdFkERvOWQsMubJPOSzMwDODGCa22JaqgUwzAhyENZmDwksSKUcVNEwnixibTXE4OBvKvB2TwXBhF98Bmeu6Z_y9ejYuquylpOSD5K0wVYZEkSR2W21vzNIBFeTswSBhIK68lmKTKRbPUvH5_7Lo4rPbcOKU1dvuw3N-R1VX5sxt7DtNf_928bsFYxyeCiNP0m1HC4Bavf6gtuQ6vr4rzDR2sHDJ5fNI6CB6-gZadX4IMFgus3u6EE91NX73i8A0_tq_5lJ6wUEsIilmxiqbGUKmKFJhojxShKIVhCNed5wYUh1KSKKYWao4rzXFqzGB4rRrShHC2z2IX6cDTEPQg4Uyla_sdzYhJDVZ6Q2CgjKNUminPSADIDLCuq8uFOxeI188eISGYe5MyBnFUgN-B0Pua9LJ7xZ-9tB-u8Z4VoA5ozu2TV-hpn7iDFqKvmt__7qGNY7vRvu1n3undzACv2O6IM8GpCffIxxUNYKj4nL-OPIz-JvgAM_8Kg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Video+Retrieval+Using+Image+Queries&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Araujo%2C+Andre&rft.au=Girod%2C+Bernd&rft.date=2018-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=28&rft.issue=6&rft.spage=1406&rft_id=info:doi/10.1109%2FTCSVT.2017.2667710&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |