Underdetermined Convolutive Source Separation Using GEM-MU With Variational Approximated Optimum Model Order NMF2D
An unsupervised machine learning algorithm based on nonnegative matrix factor Two-dimensional deconvolution (NMF2D) with approximated optimum model order is proposed. The proposed algorithm adapted under the hybrid framework that combines the generalized EM algorithm with multiplicative update. As t...
Saved in:
| Published in: | IEEE/ACM transactions on audio, speech, and language processing Vol. 25; no. 1; pp. 35 - 49 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2329-9290, 2329-9304 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | An unsupervised machine learning algorithm based on nonnegative matrix factor Two-dimensional deconvolution (NMF2D) with approximated optimum model order is proposed. The proposed algorithm adapted under the hybrid framework that combines the generalized EM algorithm with multiplicative update. As the number of parameters in the NMF2D grows exponentially the number of frequency basis increases linearly, the issues of model-order fitness, initialization, and parameters estimation become ever more critical. This paper proposes a variational Bayesian method to optimize the number of components in the NMF2D by using the Gamma-Exponential process as the observation-latent model. In addition, it is shown that the proposed Gamma-Exponential process can be used to initialize the NMF2D parameters. Finally, the paper investigates the issue and advantages of using different window length. Experimental results for the synthetic convolutive mixtures and live recordings verify the competence of the proposed algorithm. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2329-9290 2329-9304 |
| DOI: | 10.1109/TASLP.2016.2620600 |