Efficiency Enhancement for Underwater Adaptive Modulation and Coding Systems: Via Sparse Principal Component Analysis
In this letter, to explore key channel state information (CSI) as a more efficient switching metric in the task of underwater adaptive modulation and coding (AMC), a sparse principal component analysis (SPCA) based approach is proposed from the perspective of statistical analysis plus machine learni...
Gespeichert in:
| Veröffentlicht in: | IEEE communications letters Jg. 24; H. 8; S. 1808 - 1811 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-7798, 1558-2558 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this letter, to explore key channel state information (CSI) as a more efficient switching metric in the task of underwater adaptive modulation and coding (AMC), a sparse principal component analysis (SPCA) based approach is proposed from the perspective of statistical analysis plus machine learning (ML). This data-driven sparse learning method can offer significant system efficiency enhancement in the procedures of both channel estimation and communication scheme switching. By leveraging a dataset that contains real-world channel measurements collected from three field experiments, simulations demonstrate the effectiveness of the proposed scheme. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2020.2990188 |