Communication-Failure-Resilient Distributed Frequency Control in Smart Grids: Part I: Architecture and Distributed Algorithms

Distributed algorithms have been proposed as options to scale control propositions to the massive number of intelligent energy devices, sub-systems, and distributed energy resources being integrated into the electricity grid. Distributed algorithms rely on the communication network for exchanging in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems Jg. 35; H. 2; S. 1317 - 1326
Hauptverfasser: Nazari, Masoud H., Wang, Le Yi, Grijalva, Santiago, Egerstedt, Magnus
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0885-8950, 1558-0679
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distributed algorithms have been proposed as options to scale control propositions to the massive number of intelligent energy devices, sub-systems, and distributed energy resources being integrated into the electricity grid. Distributed algorithms rely on the communication network for exchanging information. Failures in the communication network can jeopardize distributed decision-making and in the worst-case scenario can lead to system-level stability problems. This paper proposes a communication-failure-resilient architecture for distributed operation and control in smart grids with hybrid producer/consumer (prosumer) agents. We describe the relations between system-wide performance and communication failures and identify topological conditions on the cyber-physical network, under which prosumers can perform key operating tasks, such as distributed frequency regulation through an imperfect communication network.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2019.2943820