Communication-Failure-Resilient Distributed Frequency Control in Smart Grids: Part I: Architecture and Distributed Algorithms
Distributed algorithms have been proposed as options to scale control propositions to the massive number of intelligent energy devices, sub-systems, and distributed energy resources being integrated into the electricity grid. Distributed algorithms rely on the communication network for exchanging in...
Uloženo v:
| Vydáno v: | IEEE transactions on power systems Ročník 35; číslo 2; s. 1317 - 1326 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0885-8950, 1558-0679 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Distributed algorithms have been proposed as options to scale control propositions to the massive number of intelligent energy devices, sub-systems, and distributed energy resources being integrated into the electricity grid. Distributed algorithms rely on the communication network for exchanging information. Failures in the communication network can jeopardize distributed decision-making and in the worst-case scenario can lead to system-level stability problems. This paper proposes a communication-failure-resilient architecture for distributed operation and control in smart grids with hybrid producer/consumer (prosumer) agents. We describe the relations between system-wide performance and communication failures and identify topological conditions on the cyber-physical network, under which prosumers can perform key operating tasks, such as distributed frequency regulation through an imperfect communication network. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-8950 1558-0679 |
| DOI: | 10.1109/TPWRS.2019.2943820 |