Adaptive Fuzzy Tracking Control of Nonlinear Time-Delay Systems With Dead-Zone Output Mechanism Based on a Novel Smooth Model
This paper presents a novel fuzzy adaptive controller for controlling a class of dead-zone output nonlinear systems with time delays. A new approximate model is first designed to describe a special dead-zone phenomenon encountered by the output mechanism of nonlinear systems, and the proposed smooth...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 23; číslo 6; s. 1998 - 2011 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a novel fuzzy adaptive controller for controlling a class of dead-zone output nonlinear systems with time delays. A new approximate model is first designed to describe a special dead-zone phenomenon encountered by the output mechanism of nonlinear systems, and the proposed smooth model can be conveniently fused with available adaptive fuzzy control techniques. In addition, the coupling effect that the dead-zone output and the time-delayed states coexist in a common coupling function makes the tracking control design more complicated. To further address this difficulty, a compensation method using mean-value theorem with Lyapunov-Krasovskii function is presented in this paper. By using the proposed output dead-zone model, and based on Lyapunov synthesis, a new optimized algorithm is developed to guarantee the prescribed convergence of tracking error and the boundedness of all the signals in the closed-loop systems. Simulations have been implemented to verify the performance of the proposed fuzzy adaptive controller. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1063-6706 1941-0034 |
| DOI: | 10.1109/TFUZZ.2015.2396075 |