A New Hybrid Fault Prognosis Method for MFS Systems Based on Distributed Neural Networks and Recursive Bayesian Algorithm
This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation o...
Uložené v:
| Vydané v: | IEEE systems journal Ročník 14; číslo 4; s. 5407 - 5416 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1932-8184, 1937-9234 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation of the aircraft. The proposed prognosis methodology is a hybrid framework composed of a failure parameter estimation unit and an RUL unit. The failure parameter estimation unit observes the failure parameters using distributed neural networks via available measurements of the MFS system. Simultaneously, the remaining useful life is anticipated by the RUL unit employing the estimated failure parameter with a recursive Bayesian algorithm. Moreover, a relative accuracy (RA) measure is invoked to validate the effectiveness of the proposed method. Simulink model of the MFS system is verified by experimental data of the LJ200 series aircraft under fight condition. Furthermore, simulation test results indicate a high accuracy of the distributed structure compared to a centralized network. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1932-8184 1937-9234 |
| DOI: | 10.1109/JSYST.2020.2986162 |