Exact Separation of Forbidden-Set Cuts Associated With Redundant Parity Checks of Binary Linear Codes

In recent years, several integer programming (IP) approaches were developed for maximum-likelihood decoding and minimum distance computation for binary linear codes. Two aspects in particular have been demonstrated to improve the performance of IP solvers as well as adaptive linear programming decod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters Jg. 24; H. 10; S. 2096 - 2099
Hauptverfasser: Puchert, Christian, Tillmann, Andreas M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-7798, 1558-2558
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, several integer programming (IP) approaches were developed for maximum-likelihood decoding and minimum distance computation for binary linear codes. Two aspects in particular have been demonstrated to improve the performance of IP solvers as well as adaptive linear programming decoders: the dynamic generation of forbidden-set (FS) inequalities, a family of valid cutting planes, and the utilization of so-called redundant parity-checks (RPCs). However, to date, it had remained unclear how to determine whether or not there exists any violated FS inequality w.r.t. any known or unknown parity-check. In this note, we prove NP -hardness of this RPC separation problem. Moreover, we formulate an IP model that combines the search for most violated FS cuts with the generation of RPCs, and report on computational experiments. Empirically, for various instances of the minimum distance problem, it turns out that while utilizing the exact separation IP does not appear to provide a computational advantage, it can apparently be avoided altogether by combining heuristics to generate RPC-based cuts.
AbstractList In recent years, several integer programming (IP) approaches were developed for maximum-likelihood decoding and minimum distance computation for binary linear codes. Two aspects in particular have been demonstrated to improve the performance of IP solvers as well as adaptive linear programming decoders: the dynamic generation of forbidden-set (FS) inequalities, a family of valid cutting planes, and the utilization of so-called redundant parity-checks (RPCs). However, to date, it had remained unclear how to determine whether or not there exists any violated FS inequality w.r.t. any known or unknown parity-check. In this note, we prove NP -hardness of this RPC separation problem. Moreover, we formulate an IP model that combines the search for most violated FS cuts with the generation of RPCs, and report on computational experiments. Empirically, for various instances of the minimum distance problem, it turns out that while utilizing the exact separation IP does not appear to provide a computational advantage, it can apparently be avoided altogether by combining heuristics to generate RPC-based cuts.
Author Tillmann, Andreas M.
Puchert, Christian
Author_xml – sequence: 1
  givenname: Christian
  surname: Puchert
  fullname: Puchert, Christian
  email: puchert@or.rwth-aachen.de
  organization: Chair of Operations Research, RWTH Aachen University, Aachen, Germany
– sequence: 2
  givenname: Andreas M.
  orcidid: 0000-0002-7744-836X
  surname: Tillmann
  fullname: Tillmann, Andreas M.
  email: a.tillmann@tu-bs.de
  organization: Chair of Operations Research, RWTH Aachen University, Aachen, Germany
BookMark eNp9kU1LAzEQhoNUsK3-Ab0EPG9NstmPHOtSP6ClYhWPSzY7S1NrUpMU9N-bfuDBg3OYmcP7zDDvDFDPWAMIXVIyopSIm2k1n81GjDAySkkMnp-gPs2yMmEx9WJPSpEUhSjP0MD7VZSULKN9BJMvqQJewEY6GbQ12Hb4zrpGty2YZAEBV9vg8dh7q7QM0OI3HZb4GdqtaaUJ-Ek6Hb5xtQT17nf0rTbSfeOpNiAdrmwL_hyddnLt4eJYh-j1bvJSPSTT-f1jNZ4mioksJFwBU6rpaCFI3hFaACOStZkQHAhjeVc2TdSUbZ41nAPPGwqQizSloKQqZTpE14e5G2c_t-BDvbJbZ-LKmnEuRM5SVkRVeVApZ7130NVKh_3xwUm9rimpd6bWe1Prnan10dSIsj_oxumPeO7_0NUB0gDwC4j4EsZ4-gOR34To
CODEN ICLEF6
CitedBy_id crossref_primary_10_1007_s10589_020_00235_6
crossref_primary_10_1137_21M142770X
Cites_doi 10.1109/ISIT.2014.6875302
10.1109/TCOMM.2010.04.090164
10.1109/ISIT.2007.4557412
10.1109/JSAC.2009.090818
10.1016/0095-8956(86)90063-8
10.1109/TIT.2010.2040941
10.1109/TIT.2008.2006384
10.1109/TIT.2012.2204955
10.1109/18.641542
10.1109/TIT.2004.842696
10.1109/TIT.2012.2191697
10.1007/978-3-642-78240-4
10.1109/TIT.1978.1055873
10.1109/LCOMM.2016.2530706
10.1002/ett.4460090308
10.1007/978-3-319-63976-5_8
10.1109/ISIT.2009.5205846
10.1109/ISIT.2007.4557459
10.1016/0012-365X(75)90003-5
10.1109/TIT.2010.2048489
10.1109/TIT.2012.2193661
10.1109/ISTC.2010.5613894
10.1016/0095-8956(89)90052-X
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LCOMM.2020.3000046
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 2099
ExternalDocumentID 10_1109_LCOMM_2020_3000046
9108224
Genre orig-research
GrantInformation_xml – fundername: Excellence Initiative of the German federal and state governments
– fundername: RWTH ERS Start-Up project “Efficient exact maximumlikelihood decoding and minimum-distance computation for binary linear codes” (Tillmann)
  funderid: 10.13039/501100007210
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-4ce2ccbf17906f017e20a2d5994e0226f8bb4ce8d65b44e46b1ee69331ecac8a3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000577695400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7798
IngestDate Mon Jun 30 10:20:32 EDT 2025
Sat Nov 29 03:56:03 EST 2025
Tue Nov 18 22:41:19 EST 2025
Wed Aug 27 02:30:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4ce2ccbf17906f017e20a2d5994e0226f8bb4ce8d65b44e46b1ee69331ecac8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7744-836X
PQID 2449962327
PQPubID 85419
PageCount 4
ParticipantIDs ieee_primary_9108224
crossref_citationtrail_10_1109_LCOMM_2020_3000046
proquest_journals_2449962327
crossref_primary_10_1109_LCOMM_2020_3000046
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev COML
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
helmling (ref28) 2019
ref10
ref2
ref1
ref17
ref16
ref19
ref18
kabakulak (ref8) 2018
gleixner (ref27) 2018
scholl (ref11) 2013
ref24
ref26
ref25
ref20
ref22
ref21
garey (ref23) 1979
ref29
ref7
ref9
ref4
ref3
ref6
ref5
tanatmis (ref14) 2011
References_xml – ident: ref29
  doi: 10.1109/ISIT.2014.6875302
– ident: ref4
  doi: 10.1109/TCOMM.2010.04.090164
– ident: ref7
  doi: 10.1109/ISIT.2007.4557412
– ident: ref22
  doi: 10.1109/JSAC.2009.090818
– ident: ref12
  doi: 10.1016/0095-8956(86)90063-8
– ident: ref26
  doi: 10.1109/TIT.2010.2040941
– ident: ref19
  doi: 10.1109/TIT.2008.2006384
– ident: ref20
  doi: 10.1109/TIT.2012.2204955
– ident: ref2
  doi: 10.1109/18.641542
– ident: ref16
  doi: 10.1109/TIT.2004.842696
– year: 2011
  ident: ref14
  article-title: Mathematical programming approaches for decoding of binary linear codes
– ident: ref17
  doi: 10.1109/TIT.2012.2191697
– ident: ref24
  doi: 10.1007/978-3-642-78240-4
– ident: ref3
  doi: 10.1109/TIT.1978.1055873
– ident: ref21
  doi: 10.1109/LCOMM.2016.2530706
– ident: ref9
  doi: 10.1002/ett.4460090308
– ident: ref18
  doi: 10.1007/978-3-319-63976-5_8
– ident: ref6
  doi: 10.1109/ISIT.2009.5205846
– ident: ref1
  doi: 10.1109/ISIT.2007.4557459
– year: 2018
  ident: ref27
  article-title: The SCIP optimization suite 6.0
– ident: ref15
  doi: 10.1016/0012-365X(75)90003-5
– ident: ref10
  doi: 10.1109/TIT.2010.2048489
– year: 1979
  ident: ref23
  publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness
– ident: ref25
  doi: 10.1109/TIT.2012.2193661
– ident: ref5
  doi: 10.1109/ISTC.2010.5613894
– ident: ref13
  doi: 10.1016/0095-8956(89)90052-X
– year: 2019
  ident: ref28
  publication-title: Database of Channel Codes and ML Simulation Results
– year: 2018
  ident: ref8
  article-title: A branch-price-and-cut algorithm for optimal decoding of LDPC codes
  publication-title: arXiv 1803 04798
– start-page: 1
  year: 2013
  ident: ref11
  article-title: Integer Programming as a Tool for Analysis of Channel Codes
  publication-title: Proc of SCC
SSID ssj0008251
Score 2.323154
Snippet In recent years, several integer programming (IP) approaches were developed for maximum-likelihood decoding and minimum distance computation for binary linear...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2096
SubjectTerms Binary codes
Binary system
Codes
Computational complexity
Computational modeling
Decoders
Hamming weight
Indexes
integer linear programming
Integer programming
IP networks
Linear codes
Linear programming
Maximum likelihood decoding
Optimization
Parity
Parity check codes
Separation
Solvers
Title Exact Separation of Forbidden-Set Cuts Associated With Redundant Parity Checks of Binary Linear Codes
URI https://ieeexplore.ieee.org/document/9108224
https://www.proquest.com/docview/2449962327
Volume 24
WOSCitedRecordID wos000577695400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2558
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008251
  issn: 1089-7798
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYAcYADb8RgoBy4QaHPrDlCxcRhPMT7VjWJqyFQi9YO8fNx0m4CgZC49eBUVb469tf6swH2KahoTdzH0SrXTqg86UgpAocbehF7PBJWx_0w6F1exk9P4noGDqdaGES0xWd4ZC7tv3xdqrH5VHZMoc0UPc7CbK_HG63W9NQ1EsymmF5QxijiiUDGFceD5OrigqigTwzV5sT8WxCyU1V-HMU2vvSX__dkK7DU5pHspAF-FWawWIPFL90F1wHPPjJVs1ts2nuXBStz1i9H0nQNKZxbrFkyris2QQg1e3yuh-wGjbKMdpxdZ2a0HUuGqF4qs_rUqncZEVhyEJaUGqsNuO-f3SXnTjtVwVG-iGrCA32lZG5ac_GcHBJ9N_N1JESIFNB5HktJNrHmkQxDDLn0ELkIAg9VpuIs2IS5oixwC1gc5DExXO3qMApzL5BRFknKEN08yCQPvQ54k21OVdty3Ey-eE0t9XBFaqFJDTRpC00HDqZr3pqGG39arxswppYtDh3oTtBMW5-sUkpkiNxRBtnb_n3VDiyYezelel2Yq0dj3IV59V4_V6M9-7p9AplS0Ms
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLZ4ScCB5652eObAjS30GZojVIxAzAwIWOBWNYkrEKsWTTsrfv46aWcEAiFx68FRq3x17K_1ZwPsUVDRmriPo1WunVB50pFSBA439CL2eCSsjvuudzQYxA8P4moKfk-0MIhoi8_wwFzaf_m6VCPzqeyQQpspepyGWTM5q1VrTc5dI8JsyukF5YwiHktkXHHYSy77fSKDPnFUmxXzd2HIzlX5cBjbCNNd_t6zrcBSm0my4wb6VZjCYg0W3_QXXAc8fc1UzW6wafBdFqzMWbccStM3pHBusGbJqK7YGCPU7P6pfmTXaLRltOfsKjPD7VjyiOq5MqtPrH6XEYUlF2FJqbH6AX-6p7fJmdPOVXCUL6KaEEFfKZmb5lw8J5dE3818HQkRIoV0nsdSkk2seSTDEEMuPUQugsBDlak4C37CTFEW-AtYHOQxcVzt6jAKcy-QURZJyhHdPMgkD70OeONtTlXbdNzMvvibWvLhitRCkxpo0haaDuxP1rw0LTe-tF43YEwsWxw6sDVGM229skoplSF6Rznk0cbnq3Zh_uy230t754OLTVgw92kK97Zgph6OcBvm1L_6qRru2FfvP6SH1BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Separation+of+Forbidden-Set+Cuts+Associated+With+Redundant+Parity+Checks+of+Binary+Linear+Codes&rft.jtitle=IEEE+communications+letters&rft.au=Puchert%2C+Christian&rft.au=Tillmann%2C+Andreas+M.&rft.date=2020-10-01&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=24&rft.issue=10&rft.spage=2096&rft.epage=2099&rft_id=info:doi/10.1109%2FLCOMM.2020.3000046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCOMM_2020_3000046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon