Low-Complexity Chase Decoding of Reed-Solomon Codes Using Module

The interpolation based algebraic soft decoding yields a high decoding performance for Reed-Solomon (RS) codes with a polynomial-time complexity. Its computationally expensive interpolation can be facilitated using the module structure. The desired Gröbner basis can be achieved by reducing the basis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications Jg. 68; H. 10; S. 6012 - 6022
Hauptverfasser: Xing, Jiongyue, Chen, Li, Bossert, Martin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0090-6778, 1558-0857
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interpolation based algebraic soft decoding yields a high decoding performance for Reed-Solomon (RS) codes with a polynomial-time complexity. Its computationally expensive interpolation can be facilitated using the module structure. The desired Gröbner basis can be achieved by reducing the basis of a module. This paper proposes the low-complexity Chase (LCC) decoding algorithm using this module basis reduction (BR) interpolation technique, namely the LCC-BR algorithm. By identifying <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> unreliable symbols, <inline-formula> <tex-math notation="LaTeX">2^\eta </tex-math></inline-formula> decoding test-vectors will be formulated. The LCC-BR algorithm first constructs a common basis which will be shared by the decoding of all test-vectors. This eliminates the redundant computation in decoding each test-vector, resulting in a lower decoding complexity and latency. This paper further proposes the progressive LCC-BR algorithm that decodes the test-vectors sequentially and terminates once the maximum-likelihood decision decoding outcome is reached. Exploiting the difference between the adjacent test-vectors, this progressive decoding is realized without any additional memory cost. Complexity analysis shows that the LCC-BR algorithm yields a lower complexity and latency, especially for high rate codes, which will be validated by the numerical results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2020.3011991