Low-Complexity Chase Decoding of Reed-Solomon Codes Using Module
The interpolation based algebraic soft decoding yields a high decoding performance for Reed-Solomon (RS) codes with a polynomial-time complexity. Its computationally expensive interpolation can be facilitated using the module structure. The desired Gröbner basis can be achieved by reducing the basis...
Uloženo v:
| Vydáno v: | IEEE transactions on communications Ročník 68; číslo 10; s. 6012 - 6022 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The interpolation based algebraic soft decoding yields a high decoding performance for Reed-Solomon (RS) codes with a polynomial-time complexity. Its computationally expensive interpolation can be facilitated using the module structure. The desired Gröbner basis can be achieved by reducing the basis of a module. This paper proposes the low-complexity Chase (LCC) decoding algorithm using this module basis reduction (BR) interpolation technique, namely the LCC-BR algorithm. By identifying <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> unreliable symbols, <inline-formula> <tex-math notation="LaTeX">2^\eta </tex-math></inline-formula> decoding test-vectors will be formulated. The LCC-BR algorithm first constructs a common basis which will be shared by the decoding of all test-vectors. This eliminates the redundant computation in decoding each test-vector, resulting in a lower decoding complexity and latency. This paper further proposes the progressive LCC-BR algorithm that decodes the test-vectors sequentially and terminates once the maximum-likelihood decision decoding outcome is reached. Exploiting the difference between the adjacent test-vectors, this progressive decoding is realized without any additional memory cost. Complexity analysis shows that the LCC-BR algorithm yields a lower complexity and latency, especially for high rate codes, which will be validated by the numerical results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2020.3011991 |