Low-Complexity Chase Decoding of Reed-Solomon Codes Using Module

The interpolation based algebraic soft decoding yields a high decoding performance for Reed-Solomon (RS) codes with a polynomial-time complexity. Its computationally expensive interpolation can be facilitated using the module structure. The desired Gröbner basis can be achieved by reducing the basis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on communications Ročník 68; číslo 10; s. 6012 - 6022
Hlavní autoři: Xing, Jiongyue, Chen, Li, Bossert, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0090-6778, 1558-0857
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The interpolation based algebraic soft decoding yields a high decoding performance for Reed-Solomon (RS) codes with a polynomial-time complexity. Its computationally expensive interpolation can be facilitated using the module structure. The desired Gröbner basis can be achieved by reducing the basis of a module. This paper proposes the low-complexity Chase (LCC) decoding algorithm using this module basis reduction (BR) interpolation technique, namely the LCC-BR algorithm. By identifying <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> unreliable symbols, <inline-formula> <tex-math notation="LaTeX">2^\eta </tex-math></inline-formula> decoding test-vectors will be formulated. The LCC-BR algorithm first constructs a common basis which will be shared by the decoding of all test-vectors. This eliminates the redundant computation in decoding each test-vector, resulting in a lower decoding complexity and latency. This paper further proposes the progressive LCC-BR algorithm that decodes the test-vectors sequentially and terminates once the maximum-likelihood decision decoding outcome is reached. Exploiting the difference between the adjacent test-vectors, this progressive decoding is realized without any additional memory cost. Complexity analysis shows that the LCC-BR algorithm yields a lower complexity and latency, especially for high rate codes, which will be validated by the numerical results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2020.3011991