Fully-Binarized, Parallel, RRAM-based Computing Primitive for In-Memory Similarity Search
In this work, we propose a fully-binarized XOR-based IMSS (In-Memory Similarity Search) using RRAM (Resistive Random Access Memory) arrays. XOR (Exclusive OR) operation is realized using 2T-2R bitcells arranged along the column in an array. This enables simultaneous match operation across multiple s...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Jg. 70; H. 1; S. 1 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1549-7747, 1558-3791 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this work, we propose a fully-binarized XOR-based IMSS (In-Memory Similarity Search) using RRAM (Resistive Random Access Memory) arrays. XOR (Exclusive OR) operation is realized using 2T-2R bitcells arranged along the column in an array. This enables simultaneous match operation across multiple stored data vectors by performing analog column-wise XOR operation and summation to compute HD (Hamming Distance). The proposed scheme is experimentally validated on fabricated RRAM arrays. Full-system validation is performed through SPICE simulations using open source Skywater 130 nm CMOS PDK demonstrating energy of 17 fJ per XOR operation using the proposed bitcell with a full-system power dissipation of 145 μW. Using projected estimations at advanced nodes (28 nm) energy savings of ≈1.5× compared to the state-of-the-art can be observed for a fixed workload. Application-level validation is performed on HSI (Hyper-Spectral Image) pixel classification task using the Salinas dataset demonstrating an accuracy of 91%. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1549-7747 1558-3791 |
| DOI: | 10.1109/TCSII.2022.3207378 |