Optimal Resource Allocation to Enhance Power Grid Resilience Against Hurricanes
Optimal resource allocation is critical when maximizing the resilience of the electrical power distribution network against natural disasters. This paper presents a two-step optimization strategy that integrates a pre-disaster preparedness plan and a post-disaster resource re-allocation procedure to...
Uložené v:
| Vydané v: | IEEE transactions on power systems Ročník 38; číslo 3; s. 2621 - 2629 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0885-8950, 1558-0679 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Optimal resource allocation is critical when maximizing the resilience of the electrical power distribution network against natural disasters. This paper presents a two-step optimization strategy that integrates a pre-disaster preparedness plan and a post-disaster resource re-allocation procedure to optimize the resilience of the power distribution network against hurricanes. Emergency resources are operationally interdependent, and it is these interdependencies that determine how the resources should be distributed to the critical loads in the network. This work uses the concept of the Human Readable Table (HRT) to relate the interdependencies among these resources. The resource allocation optimization is then formulated into a Mixed-Integer Nonlinear Programming (MINP) problem. The proposed method is tested on the IEEE 70-node system. The results show that this two-step procedure decreases the probability of failure for the critical nodes during the pre-hurricane stage and increases the system's ability to recover during the post-hurricane stage. |
|---|---|
| AbstractList | Optimal resource allocation is critical when maximizing the resilience of the electrical power distribution network against natural disasters. This paper presents a two-step optimization strategy that integrates a pre-disaster preparedness plan and a post-disaster resource re-allocation procedure to optimize the resilience of the power distribution network against hurricanes. Emergency resources are operationally interdependent, and it is these interdependencies that determine how the resources should be distributed to the critical loads in the network. This work uses the concept of the Human Readable Table (HRT) to relate the interdependencies among these resources. The resource allocation optimization is then formulated into a Mixed-Integer Nonlinear Programming (MINP) problem. The proposed method is tested on the IEEE 70-node system. The results show that this two-step procedure decreases the probability of failure for the critical nodes during the pre-hurricane stage and increases the system's ability to recover during the post-hurricane stage. |
| Author | Marti, Andrea Yang, Zejun Chen, Ying Marti, Jose R. |
| Author_xml | – sequence: 1 givenname: Zejun orcidid: 0000-0003-1843-0335 surname: Yang fullname: Yang, Zejun email: zyang@ece.ubc.ca organization: Department of Electrical Engineering, KU Leuven, Leuven, Belgium – sequence: 2 givenname: Andrea orcidid: 0000-0003-3650-0616 surname: Marti fullname: Marti, Andrea email: andreatjml@gmail.com organization: Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada – sequence: 3 givenname: Ying orcidid: 0000-0001-7379-5025 surname: Chen fullname: Chen, Ying email: chen_ying@tsinghua.edu.cn organization: Department of Electrical Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Jose R. orcidid: 0000-0003-3811-3687 surname: Marti fullname: Marti, Jose R. email: jrms@ece.ubc.ca organization: Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada |
| BookMark | eNp9kE1PAjEQhhuDiYD-Ab1s4nmxH9ulPRKCYEICQYzHzVC6WrK22JYY_71dIB48eOkk0_dpZ54e6lhnNUK3BA8IwfJhvXxdPQ8opnTAiGSEsQvUJZyLHJdD2UFdLATPheT4CvVC2GGMy3TRRYvFPpoPaLKVDu7glc5GTeMURONsFl02se9gU3fpvrTPpt5s26RpjG67ozcwNsRsdvDeKLA6XKPLGpqgb861j14eJ-vxLJ8vpk_j0TxXVPKYU5XGLsWQlAI2CjbbWhVcS83SuaG1FoTyGitWA0jMJVEMGAZNOQwFAAHWR_end_fefR50iNUujW_TlxUVuKQU80KklDillHcheF1XysTjbtGDaSqCq1ZfddRXtfqqs76E0j_o3idR_vt_6O4EGa31LyAFGxYFYT_p3H5B |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_3390_su16073047 crossref_primary_10_1109_TSG_2024_3362344 crossref_primary_10_1109_ACCESS_2024_3415548 crossref_primary_10_3390_en18020422 crossref_primary_10_1016_j_epsr_2025_112027 crossref_primary_10_1016_j_epsr_2025_112237 crossref_primary_10_1109_TSG_2025_3578484 crossref_primary_10_1109_JIOT_2025_3584536 crossref_primary_10_3390_en18081940 crossref_primary_10_1016_j_segan_2025_101782 crossref_primary_10_1016_j_energy_2025_136450 crossref_primary_10_1109_ACCESS_2024_3510619 crossref_primary_10_1109_TPWRS_2024_3386851 crossref_primary_10_1016_j_eng_2024_10_004 |
| Cites_doi | 10.1109/ACCESS.2018.2878894 10.1049/iet-stg.2019.0169 10.1109/MPE.2014.2301514 10.3390/pr8101200 10.1109/WSC40007.2019.9004931 10.1109/TPWRS.2016.2641463 10.1109/TSG.2016.2605692 10.1016/j.ijepes.2021.107214 10.2172/1764623 10.1109/TPWRD.2013.2281265 10.1109/TSG.2016.2591885 10.1109/TWC.2009.061064 10.1109/TSMC.2017.2681623 10.1109/TII.2017.2768998 10.1109/TPWRS.2021.3088376 10.1109/JSYST.2017.2773837 10.1007/978-3-319-99843-5_1 10.1109/TITS.2010.2101063 10.1109/TPWRS.2013.2286171 10.1007/978-3-319-03518-5_12 10.1109/TPWRS.2016.2618365 10.1109/JPROC.2017.2666548 10.1109/PROC.1975.9770 10.1109/TSG.2015.2388736 10.1109/JPROC.2017.2684780 10.1504/IJCIS.2018.095619 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TPWRS.2022.3193133 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0679 |
| EndPage | 2629 |
| ExternalDocumentID | 10_1109_TPWRS_2022_3193133 9837441 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Technology Project of SGCC grantid: 52130418000L – fundername: National Key Research and Development Program of China grantid: 2017YFB0903000 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c295t-2c110687168abcabdfc45e9e345eb2fe8125f0c3faa90591c3a30ae25a78aa1a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980444400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8950 |
| IngestDate | Fri Jul 25 19:12:34 EDT 2025 Sat Nov 29 02:52:29 EST 2025 Tue Nov 18 22:11:34 EST 2025 Wed Aug 27 02:49:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-2c110687168abcabdfc45e9e345eb2fe8125f0c3faa90591c3a30ae25a78aa1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3650-0616 0000-0003-3811-3687 0000-0003-1843-0335 0000-0001-7379-5025 |
| PQID | 2806220548 |
| PQPubID | 85441 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2806220548 crossref_citationtrail_10_1109_TPWRS_2022_3193133 crossref_primary_10_1109_TPWRS_2022_3193133 ieee_primary_9837441 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-May 2023-5-00 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 Cardinal (ref2) 2022; 84 ref30 ref11 ref10 ref1 ref17 Alsubaie (ref25) 2016 ref16 ref18 Finkelstein (ref31) 2008 Zhang (ref19) 2019 ref24 ref23 ref26 ref20 ref22 ref21 (ref3) 2021 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 |
| References_xml | – ident: ref28 doi: 10.1109/ACCESS.2018.2878894 – ident: ref21 doi: 10.1049/iet-stg.2019.0169 – ident: ref1 doi: 10.1109/MPE.2014.2301514 – ident: ref7 doi: 10.3390/pr8101200 – ident: ref20 doi: 10.1109/WSC40007.2019.9004931 – ident: ref22 doi: 10.1109/TPWRS.2016.2641463 – ident: ref15 doi: 10.1109/TSG.2016.2605692 – volume-title: Proc. 25th CIRED year: 2019 ident: ref19 article-title: Optimal resource allocation to reduce the distribution system risk induced by hurricanes – ident: ref16 doi: 10.1016/j.ijepes.2021.107214 – ident: ref14 doi: 10.2172/1764623 – ident: ref10 doi: 10.1109/TPWRD.2013.2281265 – year: 2021 ident: ref3 article-title: China flood death toll rises sharply to over 300 – ident: ref9 doi: 10.1109/TSG.2016.2591885 – ident: ref23 doi: 10.1109/TWC.2009.061064 – ident: ref12 doi: 10.1109/TSMC.2017.2681623 – ident: ref5 doi: 10.1109/TII.2017.2768998 – ident: ref24 doi: 10.1109/TPWRS.2021.3088376 – ident: ref4 doi: 10.1109/JSYST.2017.2773837 – volume: 84 start-page: 12 issue: 7 year: 2022 ident: ref2 article-title: Extreme winter storms: Environmental impacts of public utility policies on vulnerable populations publication-title: J. Environ. Health – ident: ref26 doi: 10.1007/978-3-319-99843-5_1 – ident: ref11 doi: 10.1109/TITS.2010.2101063 – year: 2016 ident: ref25 article-title: Improving critical infrastructure resilience with application to power distribution networks (T) – ident: ref8 doi: 10.1109/TPWRS.2013.2286171 – ident: ref27 doi: 10.1007/978-3-319-03518-5_12 – ident: ref6 doi: 10.1109/TPWRS.2016.2618365 – ident: ref17 doi: 10.1109/JPROC.2017.2666548 – ident: ref30 doi: 10.1109/PROC.1975.9770 – ident: ref13 doi: 10.1109/TSG.2015.2388736 – ident: ref18 doi: 10.1109/JPROC.2017.2684780 – ident: ref29 doi: 10.1504/IJCIS.2018.095619 – volume-title: Failure Rate Modelling For Reliability and Risk year: 2008 ident: ref31 |
| SSID | ssj0006679 |
| Score | 2.5218647 |
| Snippet | Optimal resource allocation is critical when maximizing the resilience of the electrical power distribution network against natural disasters. This paper... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2621 |
| SubjectTerms | Disaster management Disaster response Electric power distribution Emergency procedures Hurricanes interdependencies Minimization Mixed integer Natural disasters Nonlinear programming optimal resource allocation Optimization Resilience Resource allocation Resource management Risk management system restoration Wind speed |
| Title | Optimal Resource Allocation to Enhance Power Grid Resilience Against Hurricanes |
| URI | https://ieeexplore.ieee.org/document/9837441 https://www.proquest.com/docview/2806220548 |
| Volume | 38 |
| WOSCitedRecordID | wos000980444400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQADr4IoFOSBDUwTO07ssUItHVBbQYFukeM4EKmkqE35_djOQyAQEouV4Swl_uL77s6-OwAuqK8UdpRAHic-8pJAIqF5Fmny1nQYB4TakkJPd8FoxGYzPmmAqzoXRillL5-pa_Noz_LjhVybUFmXa2_KM1nqG0HgF7latdb1_aKuHmMUMU6dKkHG4d3p5Pn-QbuCGGsPlROXkG8kZLuq_FDFll8Gu_97sz2wU9qRsFcAvw8aKjsA21-qC7bAeKzVwZsWqkL0sDc31GWggPkC9rNXAzmcmEZp8HaZxkYyndvNDnsvItWmIxzaGKHQGvEQPA7605shKvsnIIk5zRGW-vN94xExEUkRxYn0qOKK6DHCidLcThNHkkQIrq0sVxJBHKEwFQETwhXkCDSzRaaOAVSx1gWSme5_xFOURFyPAY5YQoNIeEkbuNWChrIsLm56XMxD62Q4PLQghAaEsAShDS7rOe9FaY0_pVtm2WvJcsXboFPhFpa7bxWa02KTQOyxk99nnYIt0za-uLjYAc18uVZnYFN-5OlqeW5_rE_2p8pN |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYmQAIOvBGDATlwg0KbR5scJ7QxxNgmGI9blaYpTBob2oPfT5J2EwiExCXqwZHafI0_24ltgBMWao19LT0qSOjRLFKeNDzrGfI2dJhGhLmSQo_NqNXiz8-iU4KzeS6M1tpdPtPn9tGd5adDNbWhsgthvClqs9QXGaXYz7O15no3DPPKepwzjwvmz1JkfHHR7Tzd3RtnEGPjowoSEPKNhlxflR_K2DFMff1_77YBa4Uliao59JtQ0oMtWP1SX3Ab2m2jEN6M0CxIj6p9S14WDDQZotrg1YKOOrZVGroa9VIr2eu77Y6qL7JnjEfUcFFCaXTiDjzUa93Lhld0UPAUFmziYWU-P7Q-EZeJkkmaKcq00MSMCc60YXeW-YpkUgpjZwWKSOJLjZmMuJSBJLuwMBgO9B4gnRptoLjt_0eoZiQRZoxwwjMWJZJmZQhmCxqrory47XLRj52b4YvYgRBbEOIChDKczue858U1_pTetss-lyxWvAyVGW5xsf_GsT0vtinElO__PusYlhvd22bcvG7dHMCKbSKfX2OswMJkNNWHsKQ-Jr3x6Mj9ZJ-mJ82U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Resource+Allocation+to+Enhance+Power+Grid+Resilience+Against+Hurricanes&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Yang%2C+Zejun&rft.au=Marti%2C+Andrea&rft.au=Chen%2C+Ying&rft.au=Marti%2C+Jose+R&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=38&rft.issue=3&rft.spage=2621&rft_id=info:doi/10.1109%2FTPWRS.2022.3193133&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |