Command-Filter-Based Adaptive Fuzzy Finite-Time Control for Switched Nonlinear Systems Using State-Dependent Switching Method

The adaptive fuzzy finite-time tracking control problem of a class of switched nonlinear systems is investigated in this study. Fuzzy logic systems are introduced to handle the unknown nonlinear terms in the considered system. To overcome the drawback in the recursive design method, a finite-time co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems Jg. 29; H. 4; S. 833 - 845
Hauptverfasser: Li, Shi, Ahn, Choon Ki, Xiang, Zhengrong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1063-6706, 1941-0034
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adaptive fuzzy finite-time tracking control problem of a class of switched nonlinear systems is investigated in this study. Fuzzy logic systems are introduced to handle the unknown nonlinear terms in the considered system. To overcome the drawback in the recursive design method, a finite-time command filter is employed. By constructing a new state-dependent switching law and adaptive fuzzy control signal, the existing restrictions on subsystems of switched systems are relaxed, all subsystems of the considered system are allowed to be unstabilizable. To avoid the Zeno behavior, a new hysteresis switching law is derived. It is proven that all states of the closed-loop system are bounded in finite time under the proposed fuzzy finite-time control scheme. Additionally, the proposed control method is extended to a class of more general switched large-scale nonlinear systems. Finally, two examples are provided to verify the developed method's effectiveness.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2020.2965917