A Robust Generalized Proportionate Diffusion LMS Algorithm for Distributed Estimation
This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matri...
Uloženo v:
| Vydáno v: | IEEE transactions on circuits and systems. II, Express briefs Ročník 68; číslo 4; s. 1552 - 1556 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1549-7747, 1558-3791 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matrix to be non-diagonal instead of being a diagonal matrix. Second, to achieve robustness to impulsive noise while simultaneously maintaining a fast convergence property, we use a combination of Mean Square Deviation (MSD) and disturbance incurred in the adaptation step as the objective cost function. By simplifying and optimizing the proposed cost function, a closed form formula is obtained for the gain matrix in the general non-diagonal case. Simulation results demonstrate the efficiency of the proposed method in comparison to some other state-of-the-art algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1549-7747 1558-3791 |
| DOI: | 10.1109/TCSII.2020.3029780 |