A Robust Generalized Proportionate Diffusion LMS Algorithm for Distributed Estimation

This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. II, Express briefs Ročník 68; číslo 4; s. 1552 - 1556
Hlavní autoři: Zayyani, Hadi, Javaheri, Amirhossein
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This brief paper proposes a robust generalized proportionate diffusion Least Mean Square (LMS) algorithm for distributed estimation of a parameter vector in a network. The contribution of this brief is twofold. First, we generalize the concept of proportionate diffusion LMS by letting the gain matrix to be non-diagonal instead of being a diagonal matrix. Second, to achieve robustness to impulsive noise while simultaneously maintaining a fast convergence property, we use a combination of Mean Square Deviation (MSD) and disturbance incurred in the adaptation step as the objective cost function. By simplifying and optimizing the proposed cost function, a closed form formula is obtained for the gain matrix in the general non-diagonal case. Simulation results demonstrate the efficiency of the proposed method in comparison to some other state-of-the-art algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2020.3029780