Construction D' Lattices for Power-Constrained Communications
Designs and methods for nested lattice codes using Construction D' lattices for coding and convolutional code lattices for shaping are described. Two encoding methods and a decoding algorithm for Construction D' coding lattices that can be used with shaping lattices for power-constrained c...
Uložené v:
| Vydané v: | IEEE transactions on communications Ročník 70; číslo 4; s. 2200 - 2212 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0090-6778, 1558-0857 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Designs and methods for nested lattice codes using Construction D' lattices for coding and convolutional code lattices for shaping are described. Two encoding methods and a decoding algorithm for Construction D' coding lattices that can be used with shaping lattices for power-constrained channels are given. We construct nested lattice codes with good coding properties, high shaping gain, and low-complexity encoding and decoding. Convolutional code generator polynomials for Construction A lattices with the greatest shaping gain are given, as a result of an extensive search. It is shown that rate 1/3 convolutional codes provide a more favorable performance-complexity trade-off than rate 1/2 convolutional codes. Tail-biting convolutional codes have higher shaping gain than that of zero-tailed convolutional codes. A design for quasi-cyclic low-density parity-check (QC-LDPC) codes to form Construction D' lattices which have efficient encoding and indexing is presented. The resulting QC-LDPC Construction D' lattices are evaluated using four shaping lattices: the <inline-formula> <tex-math notation="LaTeX">E_{8} </tex-math></inline-formula> lattice, the <inline-formula> <tex-math notation="LaTeX">BW_{16} </tex-math></inline-formula> lattice, the Leech lattice and our best-found convolutional code lattice, showing a shaping gain of approximately 0.65 dB, 0.86 dB, 1.03 dB and 1.25 dB at dimension 2304. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0090-6778 1558-0857 |
| DOI: | 10.1109/TCOMM.2022.3147235 |