Iterative Soft Decoding of Reed-Solomon Codes Based on Deep Learning

In this letter, a deep learning based iterative soft decision decoding algorithm for Reed-Solomon codes is proposed. This algorithm takes advantage of deep neural network and Stochastic Shifting based Iterative Decoding (SSID). By assigning weights to every edge in the Tanner graph and changing the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 24; číslo 9; s. 1991 - 1994
Hlavní autoři: Zhang, Wei, Zou, Shuming, Liu, Yanyan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this letter, a deep learning based iterative soft decision decoding algorithm for Reed-Solomon codes is proposed. This algorithm takes advantage of deep neural network and Stochastic Shifting based Iterative Decoding (SSID). By assigning weights to every edge in the Tanner graph and changing the architecture of SSID method, the proposed neural network decoder achieves better decoding performance. Compared with BM decoding, HDD-LCC and traditional SSID, simulation results show that for RS (15, 11), this algorithm provides coding gain up to 1.5dB, 1.1dB and 0.5dB, respectively when FER = 10 −2 .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.2992488