Remote Sensing Image Coding for Machines on Semantic Segmentation via Contrastive Learning

Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient transmission and storage. However, most of the existing compression algorithms are developed based on optimizing for the human perceptual that a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 13
Main Authors: Zhang, Junxi, Chen, Zhenzhong, Liu, Shan
Format: Journal Article
Language:English
Published: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient transmission and storage. However, most of the existing compression algorithms are developed based on optimizing for the human perceptual that are not suitable for remote sensing image applications where RSIs are usually used for machine interpretation tasks, such as semantic segmentation for ground-object recognition. In this article, we propose an image coding for machines (ICMs) paradigm based on contrastive learning in a fully supervised manner to boost semantic segmentation of compressed RSIs. Specifically, we build an end-to-end compression framework to make full use of the global semantic information by clustering intracategory projected embeddings and spacing intercategory embeddings apart, to compensate for the loss of feature discriminability during the compression process and reconstruct the decision boundaries between different categories. Compared to the state-of-the-art image compression methods, our proposed method significantly improves the performance of semantic segmentation on the remote sensing labeling benchmark datasets.
AbstractList Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient transmission and storage. However, most of the existing compression algorithms are developed based on optimizing for the human perceptual that are not suitable for remote sensing image applications where RSIs are usually used for machine interpretation tasks, such as semantic segmentation for ground-object recognition. In this article, we propose an image coding for machines (ICMs) paradigm based on contrastive learning in a fully supervised manner to boost semantic segmentation of compressed RSIs. Specifically, we build an end-to-end compression framework to make full use of the global semantic information by clustering intracategory projected embeddings and spacing intercategory embeddings apart, to compensate for the loss of feature discriminability during the compression process and reconstruct the decision boundaries between different categories. Compared to the state-of-the-art image compression methods, our proposed method significantly improves the performance of semantic segmentation on the remote sensing labeling benchmark datasets.
Author Zhang, Junxi
Liu, Shan
Chen, Zhenzhong
Author_xml – sequence: 1
  givenname: Junxi
  surname: Zhang
  fullname: Zhang, Junxi
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Zhenzhong
  orcidid: 0000-0002-7882-1066
  surname: Chen
  fullname: Chen, Zhenzhong
  email: zzchen@ieee.org
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Shan
  orcidid: 0000-0002-1442-1207
  surname: Liu
  fullname: Liu, Shan
  organization: Tencent Media Laboratory, Tencent America, Palo Alto, CA, USA
BookMark eNp9kFFLwzAUhYNMcJv-AMGHgs-dSZo2zaMMnYOJsM0XX8pdejsz1nQm3cB_b0r3ID4IgZtczpfDOSMysI1FQm4ZnTBG1cN6tlxNOOVikgipmKIXZMjSNI9pJsSADClTWcxzxa_IyPsdpUykTA7JxxLrpsVohdYbu43mNWwxmjZl96gaF72C_jQWfdTYIKrBtkaHy7ZG20JrwvZkIAC2deBbc8JogeBswK_JZQV7jzfnOSbvz0_r6Uu8eJvNp4-LWHMl2riSAmQiOEiabrKNkoJpTUuFgABaJiXXIYioOKV5km8gnEqWCpSoqpRmkIzJff_vwTVfR_RtsWuOzgbLImGcBxOVJUHFepV2jfcOq-LgTA3uu2C06CosugqLrsLiXGFg5B9Gmz50CGv2_5J3PWkQ8ZeTZFnKZfIDzsmBSg
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_LGRS_2025_3596235
Cites_doi 10.1109/ICIP40778.2020.9190860
10.1109/ICIP42928.2021.9506763
10.1155/2012/761067
10.1109/ICASSP.2018.8462653
10.1109/LGRS.2006.888109
10.1109/CVPR42600.2020.00796
10.1109/TPAMI.2016.2572683
10.1109/TPAMI.2021.3065339
10.1145/103085.103089
10.1109/TGRS.2020.3034011
10.1016/j.image.2012.01.011
10.3390/rs10060907
10.1016/j.isprsjprs.2021.03.009
10.1109/TIP.2021.3058615
10.1109/TGRS.2023.3314012
10.1109/TPAMI.2016.2644615
10.1109/CVPR52729.2023.01383
10.1109/LGRS.2020.2988294
10.1109/ICCV48922.2021.00717
10.1109/CVPR52688.2022.00563
10.1016/j.jnca.2016.02.016
10.1016/j.isprsjprs.2019.11.006
10.1109/TIP.2009.2030969
10.1145/3343031.3350849
10.1117/12.2529237
10.1109/TCSVT.2021.3056134
10.1007/978-3-319-24574-4_28
10.48550/arXiv.1511.07122
10.1109/tcsvt.2022.3195322
10.1016/j.isprsjprs.2021.05.004
10.1109/TIP.2020.3016485
10.1145/3474085.3475213
10.1109/ICCV51070.2023.02129
10.1109/ICCV48922.2021.00721
10.1109/ICCV48922.2021.01598
10.1109/TGRS.2022.3151405
10.1109/LGRS.2010.2081661
10.1016/j.jag.2011.05.017
10.1109/TGRS.2020.3033009
10.1109/ICIP.2018.8451100
10.1109/ICASSP.2014.6855025
10.1109/DCC50243.2021.00024
10.1016/j.sigpro.2023.109005
10.1109/CVPR.2017.660
10.1109/CVPR.2018.00339
10.1109/TGRS.2009.2021067
10.1109/MMSP48831.2020.9287136
10.1109/CVPR52688.2022.01697
10.1016/S0923-5965(01)00024-8
10.1109/ICASSP39728.2021.9414465
10.1016/j.isprsjprs.2023.06.001
10.1109/TPAMI.2017.2699184
10.1109/TIP.2019.2941660
10.1016/j.imavis.2010.07.001
10.1109/LGRS.2005.859942
10.1016/j.isprsjprs.2022.06.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3479190
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID 10_1109_TGRS_2024_3479190
10716527
Genre orig-research
GrantInformation_xml – fundername: Tencent
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62036005
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-f74a7342a705b6b9741cc0d9eaeaac73d2c1554f200838ba8baf7d9a94ff506a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346188500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:17:33 EDT 2025
Tue Nov 18 22:43:34 EST 2025
Sat Nov 29 03:32:42 EST 2025
Wed Aug 27 03:01:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-f74a7342a705b6b9741cc0d9eaeaac73d2c1554f200838ba8baf7d9a94ff506a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7882-1066
0000-0002-1442-1207
PQID 3122294963
PQPubID 85465
PageCount 13
ParticipantIDs ieee_primary_10716527
crossref_citationtrail_10_1109_TGRS_2024_3479190
proquest_journals_3122294963
crossref_primary_10_1109_TGRS_2024_3479190
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
Wang (ref66) 2021
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref10
ref17
ref16
ref18
Bellard (ref13) 2014
ref51
ref50
Chen (ref55) 2017
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Bjontegaard (ref65) 2001
ref8
ref7
ref9
ref4
Chen (ref54) 2014
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Ballé (ref20)
Zhu (ref29)
ref24
ref23
ref26
ref25
ref64
ref63
ref22
ref28
ref27
Xie (ref62); 34
ref60
Minnen (ref21); 31
ref61
Ballé (ref19)
References_xml – ident: ref47
  doi: 10.1109/ICIP40778.2020.9190860
– ident: ref50
  doi: 10.1109/ICIP42928.2021.9506763
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref29
  article-title: Transformer-based transform coding
– ident: ref8
  doi: 10.1155/2012/761067
– ident: ref48
  doi: 10.1109/ICASSP.2018.8462653
– ident: ref16
  doi: 10.1109/LGRS.2006.888109
– ident: ref23
  doi: 10.1109/CVPR42600.2020.00796
– ident: ref4
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref24
  doi: 10.1109/TPAMI.2021.3065339
– year: 2014
  ident: ref54
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: arXiv:1412.7062
– ident: ref9
  doi: 10.1145/103085.103089
– year: 2021
  ident: ref66
  article-title: LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation
  publication-title: arXiv:2110.08733
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref19
  article-title: End-to-end optimized image compression
– ident: ref2
  doi: 10.1109/TGRS.2020.3034011
– ident: ref10
  doi: 10.1016/j.image.2012.01.011
– ident: ref17
  doi: 10.3390/rs10060907
– ident: ref31
  doi: 10.1016/j.isprsjprs.2021.03.009
– ident: ref25
  doi: 10.1109/TIP.2021.3058615
– ident: ref32
  doi: 10.1109/TGRS.2023.3314012
– ident: ref5
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 1
  volume-title: Proc. 6th Int. Conf. Learn. Rep. (ICLR)
  ident: ref20
  article-title: Variational image compression with a scale hyperprior
– ident: ref28
  doi: 10.1109/CVPR52729.2023.01383
– ident: ref58
  doi: 10.1109/LGRS.2020.2988294
– ident: ref61
  doi: 10.1109/ICCV48922.2021.00717
– ident: ref30
  doi: 10.1109/CVPR52688.2022.00563
– ident: ref45
  doi: 10.1016/j.jnca.2016.02.016
– ident: ref57
  doi: 10.1016/j.isprsjprs.2019.11.006
– ident: ref40
  doi: 10.1109/TIP.2009.2030969
– ident: ref46
  doi: 10.1145/3343031.3350849
– ident: ref14
  doi: 10.1117/12.2529237
– ident: ref43
  doi: 10.1109/TCSVT.2021.3056134
– ident: ref52
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref53
  doi: 10.48550/arXiv.1511.07122
– ident: ref51
  doi: 10.1109/tcsvt.2022.3195322
– ident: ref59
  doi: 10.1016/j.isprsjprs.2021.05.004
– ident: ref34
  doi: 10.1109/TIP.2020.3016485
– ident: ref27
  doi: 10.1145/3474085.3475213
– ident: ref37
  doi: 10.1109/ICCV51070.2023.02129
– ident: ref44
  doi: 10.1109/ICCV48922.2021.00721
– ident: ref64
  doi: 10.1109/ICCV48922.2021.01598
– ident: ref1
  doi: 10.1109/TGRS.2022.3151405
– ident: ref18
  doi: 10.1109/LGRS.2010.2081661
– ident: ref7
  doi: 10.1016/j.jag.2011.05.017
– ident: ref3
  doi: 10.1109/TGRS.2020.3033009
– ident: ref39
  doi: 10.1109/ICIP.2018.8451100
– volume: 31
  start-page: 10771
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Joint autoregressive and hierarchical priors for learned image compression
– ident: ref42
  doi: 10.1109/ICASSP.2014.6855025
– ident: ref36
  doi: 10.1109/DCC50243.2021.00024
– volume-title: Calculation of Average PSNR Differences Between RD-Curves
  year: 2001
  ident: ref65
– ident: ref33
  doi: 10.1016/j.sigpro.2023.109005
– ident: ref6
  doi: 10.1109/CVPR.2017.660
– ident: ref22
  doi: 10.1109/CVPR.2018.00339
– year: 2017
  ident: ref55
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv:1706.05587
– ident: ref12
  doi: 10.1109/TGRS.2009.2021067
– ident: ref49
  doi: 10.1109/MMSP48831.2020.9287136
– ident: ref26
  doi: 10.1109/CVPR52688.2022.01697
– ident: ref11
  doi: 10.1016/S0923-5965(01)00024-8
– ident: ref35
  doi: 10.1109/ICASSP39728.2021.9414465
– volume: 34
  start-page: 12077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref62
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
– ident: ref60
  doi: 10.1016/j.isprsjprs.2023.06.001
– volume-title: BPG Image Format
  year: 2014
  ident: ref13
– ident: ref56
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref38
  doi: 10.1109/TIP.2019.2941660
– ident: ref41
  doi: 10.1016/j.imavis.2010.07.001
– ident: ref15
  doi: 10.1109/LGRS.2005.859942
– ident: ref63
  doi: 10.1016/j.isprsjprs.2022.06.008
SSID ssj0014517
Score 2.4418278
Snippet Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Bit rate
Clustering
Codecs
Compression
Contrastive learning
Decision making
Feature extraction
Image coding
image coding for machines (ICMs)
Image compression
Image processing
Image resolution
Image segmentation
Information processing
Learning
Object recognition
Object segmentation
Pattern recognition
Remote sensing
remote sensing interpretation
Semantic segmentation
Semantics
Transform coding
Title Remote Sensing Image Coding for Machines on Semantic Segmentation via Contrastive Learning
URI https://ieeexplore.ieee.org/document/10716527
https://www.proquest.com/docview/3122294963
Volume 62
WOSCitedRecordID wos001346188500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgW1xf5OBJqDZtmjRHWXyBivhCvJQ0TZYFtyvbdX-_mTTKgigIPeSQlJKvmUdm5huAQ66MdWZ1FmlKU3RQRFQ6vR5JJqmscqNzTzz_fC1ub_OXF3kXitV9LYwxxiefmWMc-lh-NdQfeFXmTriz7rNEzMKsELwt1voOGbCMhtpoHjkvIgkhTBrLk8eL-wfnCibsGOsmKcrfKSXku6r8EMVev5yv_PPLVmE5GJLktEV-DWZMvQ5LU_SC67Dg0zt1swGv98ZBYsgDpqvXPXI1cGKEdIeouIgzW8mNz6k0DRnWbtLAbXdfu0FvEEqTajLpK4JUViPVoIQkgZi1twlP52eP3csodFWIdCLZOLKCKZGyRIk4K3np_AmqdVxJo4xSWqRVotHGsJgYkealco8VlVSSWZvFXKVbMFcPa7MNRGc2y7jlpaGaMS3ykjtvRaaaljnllnYg_trmQgfKcex88VZ41yOWBSJTIDJFQKYDR99L3lu-jb8mbyIUUxNbFDqw9wVmEY5kU6QUW5czJ3B2flm2C4v49vaCZQ_mxqMPsw_zejLuN6MD_7d9Apwb0ME
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oh58rrg-c_AkVJs2bZqjiC9cF9FVxEtJ02RZcLuyXf39ZrJRFkRB6CGHhJZ8zTwy880AHKZSG2tWJ4GiNEYHhQeF1euBYIKKMtMqc4Xnn1q83c6en8WdJ6s7LozW2iWf6WMculh-OVDveFVmT7i17pOIT8Msts7ydK3voAFLqGdHp4H1IyIfxKShOOlc3j9YZzBix8icpCiBJ9SQ66vyQxg7DXOx8s9vW4Vlb0qS0zH2azClq3VYmigwuA7zLsFT1Rvwcq8tKJo8YMJ61SXXfStIyNkAVRexhiu5dVmVuiaDyk7q2w3vKTvo9j05qSIfPUmwmNVQ1igjiS_N2m3A48V55-wq8H0VAhUJNgoMZ5LHLJI8TIq0sB4FVSoshZZaSsXjMlJoZRhMjYizQtrH8FJIwYxJwlTGmzBTDSq9BUQlJklSkxaaKsYUz4rU-isiVrTIaGpoE8Kvbc6VLzqOvS9ec-d8hCJHZHJEJvfINOHoe8nbuOLGX5MbCMXExDEKTdj9AjP3h7LOY4rNy5kVOdu_LDuAhavObStvXbdvdmAR3zS-btmFmdHwXe_BnPoY9erhvvvzPgGmDdQK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+Image+Coding+for+Machines+on+Semantic+Segmentation+via+Contrastive+Learning&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Junxi&rft.au=Chen%2C+Zhenzhong&rft.au=Liu%2C+Shan&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3479190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3479190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon