Remote Sensing Image Coding for Machines on Semantic Segmentation via Contrastive Learning
Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient transmission and storage. However, most of the existing compression algorithms are developed based on optimizing for the human perceptual that a...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 13 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient transmission and storage. However, most of the existing compression algorithms are developed based on optimizing for the human perceptual that are not suitable for remote sensing image applications where RSIs are usually used for machine interpretation tasks, such as semantic segmentation for ground-object recognition. In this article, we propose an image coding for machines (ICMs) paradigm based on contrastive learning in a fully supervised manner to boost semantic segmentation of compressed RSIs. Specifically, we build an end-to-end compression framework to make full use of the global semantic information by clustering intracategory projected embeddings and spacing intercategory embeddings apart, to compensate for the loss of feature discriminability during the compression process and reconstruct the decision boundaries between different categories. Compared to the state-of-the-art image compression methods, our proposed method significantly improves the performance of semantic segmentation on the remote sensing labeling benchmark datasets. |
|---|---|
| AbstractList | Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient transmission and storage. However, most of the existing compression algorithms are developed based on optimizing for the human perceptual that are not suitable for remote sensing image applications where RSIs are usually used for machine interpretation tasks, such as semantic segmentation for ground-object recognition. In this article, we propose an image coding for machines (ICMs) paradigm based on contrastive learning in a fully supervised manner to boost semantic segmentation of compressed RSIs. Specifically, we build an end-to-end compression framework to make full use of the global semantic information by clustering intracategory projected embeddings and spacing intercategory embeddings apart, to compensate for the loss of feature discriminability during the compression process and reconstruct the decision boundaries between different categories. Compared to the state-of-the-art image compression methods, our proposed method significantly improves the performance of semantic segmentation on the remote sensing labeling benchmark datasets. |
| Author | Zhang, Junxi Liu, Shan Chen, Zhenzhong |
| Author_xml | – sequence: 1 givenname: Junxi surname: Zhang fullname: Zhang, Junxi organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China – sequence: 2 givenname: Zhenzhong orcidid: 0000-0002-7882-1066 surname: Chen fullname: Chen, Zhenzhong email: zzchen@ieee.org organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China – sequence: 3 givenname: Shan orcidid: 0000-0002-1442-1207 surname: Liu fullname: Liu, Shan organization: Tencent Media Laboratory, Tencent America, Palo Alto, CA, USA |
| BookMark | eNp9kFFLwzAUhYNMcJv-AMGHgs-dSZo2zaMMnYOJsM0XX8pdejsz1nQm3cB_b0r3ID4IgZtczpfDOSMysI1FQm4ZnTBG1cN6tlxNOOVikgipmKIXZMjSNI9pJsSADClTWcxzxa_IyPsdpUykTA7JxxLrpsVohdYbu43mNWwxmjZl96gaF72C_jQWfdTYIKrBtkaHy7ZG20JrwvZkIAC2deBbc8JogeBswK_JZQV7jzfnOSbvz0_r6Uu8eJvNp4-LWHMl2riSAmQiOEiabrKNkoJpTUuFgABaJiXXIYioOKV5km8gnEqWCpSoqpRmkIzJff_vwTVfR_RtsWuOzgbLImGcBxOVJUHFepV2jfcOq-LgTA3uu2C06CosugqLrsLiXGFg5B9Gmz50CGv2_5J3PWkQ8ZeTZFnKZfIDzsmBSg |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_LGRS_2025_3596235 |
| Cites_doi | 10.1109/ICIP40778.2020.9190860 10.1109/ICIP42928.2021.9506763 10.1155/2012/761067 10.1109/ICASSP.2018.8462653 10.1109/LGRS.2006.888109 10.1109/CVPR42600.2020.00796 10.1109/TPAMI.2016.2572683 10.1109/TPAMI.2021.3065339 10.1145/103085.103089 10.1109/TGRS.2020.3034011 10.1016/j.image.2012.01.011 10.3390/rs10060907 10.1016/j.isprsjprs.2021.03.009 10.1109/TIP.2021.3058615 10.1109/TGRS.2023.3314012 10.1109/TPAMI.2016.2644615 10.1109/CVPR52729.2023.01383 10.1109/LGRS.2020.2988294 10.1109/ICCV48922.2021.00717 10.1109/CVPR52688.2022.00563 10.1016/j.jnca.2016.02.016 10.1016/j.isprsjprs.2019.11.006 10.1109/TIP.2009.2030969 10.1145/3343031.3350849 10.1117/12.2529237 10.1109/TCSVT.2021.3056134 10.1007/978-3-319-24574-4_28 10.48550/arXiv.1511.07122 10.1109/tcsvt.2022.3195322 10.1016/j.isprsjprs.2021.05.004 10.1109/TIP.2020.3016485 10.1145/3474085.3475213 10.1109/ICCV51070.2023.02129 10.1109/ICCV48922.2021.00721 10.1109/ICCV48922.2021.01598 10.1109/TGRS.2022.3151405 10.1109/LGRS.2010.2081661 10.1016/j.jag.2011.05.017 10.1109/TGRS.2020.3033009 10.1109/ICIP.2018.8451100 10.1109/ICASSP.2014.6855025 10.1109/DCC50243.2021.00024 10.1016/j.sigpro.2023.109005 10.1109/CVPR.2017.660 10.1109/CVPR.2018.00339 10.1109/TGRS.2009.2021067 10.1109/MMSP48831.2020.9287136 10.1109/CVPR52688.2022.01697 10.1016/S0923-5965(01)00024-8 10.1109/ICASSP39728.2021.9414465 10.1016/j.isprsjprs.2023.06.001 10.1109/TPAMI.2017.2699184 10.1109/TIP.2019.2941660 10.1016/j.imavis.2010.07.001 10.1109/LGRS.2005.859942 10.1016/j.isprsjprs.2022.06.008 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3479190 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TGRS_2024_3479190 10716527 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Tencent funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62036005 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-f74a7342a705b6b9741cc0d9eaeaac73d2c1554f200838ba8baf7d9a94ff506a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346188500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:17:33 EDT 2025 Tue Nov 18 22:43:34 EST 2025 Sat Nov 29 03:32:42 EST 2025 Wed Aug 27 03:01:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-f74a7342a705b6b9741cc0d9eaeaac73d2c1554f200838ba8baf7d9a94ff506a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7882-1066 0000-0002-1442-1207 |
| PQID | 3122294963 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10716527 crossref_citationtrail_10_1109_TGRS_2024_3479190 proquest_journals_3122294963 crossref_primary_10_1109_TGRS_2024_3479190 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 Wang (ref66) 2021 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref10 ref17 ref16 ref18 Bellard (ref13) 2014 ref51 ref50 Chen (ref55) 2017 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 Bjontegaard (ref65) 2001 ref8 ref7 ref9 ref4 Chen (ref54) 2014 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Ballé (ref20) Zhu (ref29) ref24 ref23 ref26 ref25 ref64 ref63 ref22 ref28 ref27 Xie (ref62); 34 ref60 Minnen (ref21); 31 ref61 Ballé (ref19) |
| References_xml | – ident: ref47 doi: 10.1109/ICIP40778.2020.9190860 – ident: ref50 doi: 10.1109/ICIP42928.2021.9506763 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref29 article-title: Transformer-based transform coding – ident: ref8 doi: 10.1155/2012/761067 – ident: ref48 doi: 10.1109/ICASSP.2018.8462653 – ident: ref16 doi: 10.1109/LGRS.2006.888109 – ident: ref23 doi: 10.1109/CVPR42600.2020.00796 – ident: ref4 doi: 10.1109/TPAMI.2016.2572683 – ident: ref24 doi: 10.1109/TPAMI.2021.3065339 – year: 2014 ident: ref54 article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs publication-title: arXiv:1412.7062 – ident: ref9 doi: 10.1145/103085.103089 – year: 2021 ident: ref66 article-title: LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation publication-title: arXiv:2110.08733 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref19 article-title: End-to-end optimized image compression – ident: ref2 doi: 10.1109/TGRS.2020.3034011 – ident: ref10 doi: 10.1016/j.image.2012.01.011 – ident: ref17 doi: 10.3390/rs10060907 – ident: ref31 doi: 10.1016/j.isprsjprs.2021.03.009 – ident: ref25 doi: 10.1109/TIP.2021.3058615 – ident: ref32 doi: 10.1109/TGRS.2023.3314012 – ident: ref5 doi: 10.1109/TPAMI.2016.2644615 – start-page: 1 volume-title: Proc. 6th Int. Conf. Learn. Rep. (ICLR) ident: ref20 article-title: Variational image compression with a scale hyperprior – ident: ref28 doi: 10.1109/CVPR52729.2023.01383 – ident: ref58 doi: 10.1109/LGRS.2020.2988294 – ident: ref61 doi: 10.1109/ICCV48922.2021.00717 – ident: ref30 doi: 10.1109/CVPR52688.2022.00563 – ident: ref45 doi: 10.1016/j.jnca.2016.02.016 – ident: ref57 doi: 10.1016/j.isprsjprs.2019.11.006 – ident: ref40 doi: 10.1109/TIP.2009.2030969 – ident: ref46 doi: 10.1145/3343031.3350849 – ident: ref14 doi: 10.1117/12.2529237 – ident: ref43 doi: 10.1109/TCSVT.2021.3056134 – ident: ref52 doi: 10.1007/978-3-319-24574-4_28 – ident: ref53 doi: 10.48550/arXiv.1511.07122 – ident: ref51 doi: 10.1109/tcsvt.2022.3195322 – ident: ref59 doi: 10.1016/j.isprsjprs.2021.05.004 – ident: ref34 doi: 10.1109/TIP.2020.3016485 – ident: ref27 doi: 10.1145/3474085.3475213 – ident: ref37 doi: 10.1109/ICCV51070.2023.02129 – ident: ref44 doi: 10.1109/ICCV48922.2021.00721 – ident: ref64 doi: 10.1109/ICCV48922.2021.01598 – ident: ref1 doi: 10.1109/TGRS.2022.3151405 – ident: ref18 doi: 10.1109/LGRS.2010.2081661 – ident: ref7 doi: 10.1016/j.jag.2011.05.017 – ident: ref3 doi: 10.1109/TGRS.2020.3033009 – ident: ref39 doi: 10.1109/ICIP.2018.8451100 – volume: 31 start-page: 10771 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref21 article-title: Joint autoregressive and hierarchical priors for learned image compression – ident: ref42 doi: 10.1109/ICASSP.2014.6855025 – ident: ref36 doi: 10.1109/DCC50243.2021.00024 – volume-title: Calculation of Average PSNR Differences Between RD-Curves year: 2001 ident: ref65 – ident: ref33 doi: 10.1016/j.sigpro.2023.109005 – ident: ref6 doi: 10.1109/CVPR.2017.660 – ident: ref22 doi: 10.1109/CVPR.2018.00339 – year: 2017 ident: ref55 article-title: Rethinking atrous convolution for semantic image segmentation publication-title: arXiv:1706.05587 – ident: ref12 doi: 10.1109/TGRS.2009.2021067 – ident: ref49 doi: 10.1109/MMSP48831.2020.9287136 – ident: ref26 doi: 10.1109/CVPR52688.2022.01697 – ident: ref11 doi: 10.1016/S0923-5965(01)00024-8 – ident: ref35 doi: 10.1109/ICASSP39728.2021.9414465 – volume: 34 start-page: 12077 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref62 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers – ident: ref60 doi: 10.1016/j.isprsjprs.2023.06.001 – volume-title: BPG Image Format year: 2014 ident: ref13 – ident: ref56 doi: 10.1109/TPAMI.2017.2699184 – ident: ref38 doi: 10.1109/TIP.2019.2941660 – ident: ref41 doi: 10.1016/j.imavis.2010.07.001 – ident: ref15 doi: 10.1109/LGRS.2005.859942 – ident: ref63 doi: 10.1016/j.isprsjprs.2022.06.008 |
| SSID | ssj0014517 |
| Score | 2.4418278 |
| Snippet | Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Bit rate Clustering Codecs Compression Contrastive learning Decision making Feature extraction Image coding image coding for machines (ICMs) Image compression Image processing Image resolution Image segmentation Information processing Learning Object recognition Object segmentation Pattern recognition Remote sensing remote sensing interpretation Semantic segmentation Semantics Transform coding |
| Title | Remote Sensing Image Coding for Machines on Semantic Segmentation via Contrastive Learning |
| URI | https://ieeexplore.ieee.org/document/10716527 https://www.proquest.com/docview/3122294963 |
| Volume | 62 |
| WOSCitedRecordID | wos001346188500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgW1xf5OBJqDZtmjRHWXyBivhCvJQ0TZYFtyvbdX-_mTTKgigIPeSQlJKvmUdm5huAQ66MdWZ1FmlKU3RQRFQ6vR5JJqmscqNzTzz_fC1ub_OXF3kXitV9LYwxxiefmWMc-lh-NdQfeFXmTriz7rNEzMKsELwt1voOGbCMhtpoHjkvIgkhTBrLk8eL-wfnCibsGOsmKcrfKSXku6r8EMVev5yv_PPLVmE5GJLktEV-DWZMvQ5LU_SC67Dg0zt1swGv98ZBYsgDpqvXPXI1cGKEdIeouIgzW8mNz6k0DRnWbtLAbXdfu0FvEEqTajLpK4JUViPVoIQkgZi1twlP52eP3csodFWIdCLZOLKCKZGyRIk4K3np_AmqdVxJo4xSWqRVotHGsJgYkealco8VlVSSWZvFXKVbMFcPa7MNRGc2y7jlpaGaMS3ykjtvRaaaljnllnYg_trmQgfKcex88VZ41yOWBSJTIDJFQKYDR99L3lu-jb8mbyIUUxNbFDqw9wVmEY5kU6QUW5czJ3B2flm2C4v49vaCZQ_mxqMPsw_zejLuN6MD_7d9Apwb0ME |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oh58rrg-c_AkVJs2bZqjiC9cF9FVxEtJ02RZcLuyXf39ZrJRFkRB6CGHhJZ8zTwy880AHKZSG2tWJ4GiNEYHhQeF1euBYIKKMtMqc4Xnn1q83c6en8WdJ6s7LozW2iWf6WMculh-OVDveFVmT7i17pOIT8Msts7ydK3voAFLqGdHp4H1IyIfxKShOOlc3j9YZzBix8icpCiBJ9SQ66vyQxg7DXOx8s9vW4Vlb0qS0zH2azClq3VYmigwuA7zLsFT1Rvwcq8tKJo8YMJ61SXXfStIyNkAVRexhiu5dVmVuiaDyk7q2w3vKTvo9j05qSIfPUmwmNVQ1igjiS_N2m3A48V55-wq8H0VAhUJNgoMZ5LHLJI8TIq0sB4FVSoshZZaSsXjMlJoZRhMjYizQtrH8FJIwYxJwlTGmzBTDSq9BUQlJklSkxaaKsYUz4rU-isiVrTIaGpoE8Kvbc6VLzqOvS9ec-d8hCJHZHJEJvfINOHoe8nbuOLGX5MbCMXExDEKTdj9AjP3h7LOY4rNy5kVOdu_LDuAhavObStvXbdvdmAR3zS-btmFmdHwXe_BnPoY9erhvvvzPgGmDdQK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+Image+Coding+for+Machines+on+Semantic+Segmentation+via+Contrastive+Learning&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Junxi&rft.au=Chen%2C+Zhenzhong&rft.au=Liu%2C+Shan&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3479190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3479190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |