Remote Sensing Image Coding for Machines on Semantic Segmentation via Contrastive Learning

Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient transmission and storage. However, most of the existing compression algorithms are developed based on optimizing for the human perceptual that a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 - 13
Hlavní autoři: Zhang, Junxi, Chen, Zhenzhong, Liu, Shan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Due to the huge data volume of high-resolution remote sensing imagery (RSI) and limited transmission bandwidth, RSIs are typically compressed for efficient transmission and storage. However, most of the existing compression algorithms are developed based on optimizing for the human perceptual that are not suitable for remote sensing image applications where RSIs are usually used for machine interpretation tasks, such as semantic segmentation for ground-object recognition. In this article, we propose an image coding for machines (ICMs) paradigm based on contrastive learning in a fully supervised manner to boost semantic segmentation of compressed RSIs. Specifically, we build an end-to-end compression framework to make full use of the global semantic information by clustering intracategory projected embeddings and spacing intercategory embeddings apart, to compensate for the loss of feature discriminability during the compression process and reconstruct the decision boundaries between different categories. Compared to the state-of-the-art image compression methods, our proposed method significantly improves the performance of semantic segmentation on the remote sensing labeling benchmark datasets.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2024.3479190