Time-frequency Domain Monitoring Method for the Fault of HTS HVDC Systems Based on AI Classifiers

Since high-temperature superconductor (HTS) based HVDC systems are affected by temperature and cooling system performance, noise, the monitoring system which can classify the temporal disturbance and anomalies must be developed to ensure stable system operation. To solve this, it needs anomaly detec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity Vol. 33; no. 5; pp. 1 - 6
Main Authors: Sim, Yeon-Sub, Chang, Seung Jin
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1051-8223, 1558-2515
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since high-temperature superconductor (HTS) based HVDC systems are affected by temperature and cooling system performance, noise, the monitoring system which can classify the temporal disturbance and anomalies must be developed to ensure stable system operation. To solve this, it needs anomaly detection that accounts for system sensitivity and is able to continuously manage the response to disturbances. In this paper, we propose an integrated solution for fault severity diagnosis and anomaly detection colorred with AI based reflectometry. Anomalies such as the quench phenomenon can be detected through the anomaly score based on the reconstruction error calculated through the proposed autoencoder(AE) method. After anomaly detection, a fault classification algorithm based on the convolutional neural network (CNN) using a 2D image of a converted reflected signal through the proposed image processing was conducted. Based on the signal acquired from the <inline-formula><tex-math notation="LaTeX">7 m</tex-math></inline-formula> length 1st generation 22.9 kV/50 MVA HTS cable, PSCAD simulation was utilized to construct a long-distance line model and verified the performance of the proposed algorithm.
AbstractList Since high-temperature superconductor (HTS) based HVDC systems are affected by temperature and cooling system performance, noise, the monitoring system which can classify the temporal disturbance and anomalies must be developed to ensure stable system operation. To solve this, it needs anomaly detection that accounts for system sensitivity and is able to continuously manage the response to disturbances. In this paper, we propose an integrated solution for fault severity diagnosis and anomaly detection colorredwith AI based reflectometry. Anomalies such as the quench phenomenon can be detected through the anomaly score based on the reconstruction error calculated through the proposed autoencoder(AE) method. After anomaly detection, a fault classification algorithm based on the convolutional neural network (CNN) using a 2D image of a converted reflected signal through the proposed image processing was conducted. Based on the signal acquired from the 7 [Formula Omitted] length 1st generation 22.9 kV/50 MVA HTS cable, PSCAD simulation was utilized to construct a long-distance line model and verified the performance of the proposed algorithm.
Since high-temperature superconductor (HTS) based HVDC systems are affected by temperature and cooling system performance, noise, the monitoring system which can classify the temporal disturbance and anomalies must be developed to ensure stable system operation. To solve this, it needs anomaly detection that accounts for system sensitivity and is able to continuously manage the response to disturbances. In this paper, we propose an integrated solution for fault severity diagnosis and anomaly detection colorred with AI based reflectometry. Anomalies such as the quench phenomenon can be detected through the anomaly score based on the reconstruction error calculated through the proposed autoencoder(AE) method. After anomaly detection, a fault classification algorithm based on the convolutional neural network (CNN) using a 2D image of a converted reflected signal through the proposed image processing was conducted. Based on the signal acquired from the <inline-formula><tex-math notation="LaTeX">7 m</tex-math></inline-formula> length 1st generation 22.9 kV/50 MVA HTS cable, PSCAD simulation was utilized to construct a long-distance line model and verified the performance of the proposed algorithm.
Author Sim, Yeon-Sub
Chang, Seung Jin
Author_xml – sequence: 1
  givenname: Yeon-Sub
  orcidid: 0000-0002-6282-9581
  surname: Sim
  fullname: Sim, Yeon-Sub
  organization: Department of Electrical Engineering, Hanbat National University, Daejeon, South Korea
– sequence: 2
  givenname: Seung Jin
  orcidid: 0000-0003-2819-7506
  surname: Chang
  fullname: Chang, Seung Jin
  organization: Department of Electrical Engineering, Hanbat National University, Daejeon, South Korea
BookMark eNp9kE9PAjEQxRuDiYB-ABMPTTwv9s8WtkdcREwgHkCvm253KiXQYlsOfHuXwMF48DQvk_ebl3k91HHeAUL3lAwoJfJpNV6WA0YYH3CWFyKnV6hLhSgyJqjotJoImhWM8RvUi3FDCM2LXHSRWtkdZCbA9wGcPuKJ3ynr8MI7m3yw7gsvIK19g40POK0BT9Vhm7A3eLZa4tnnpMTLY0ywi_hZRWiwd3j8hsutitEaCyHeomujthHuLrOPPqYvq3KWzd9f38rxPNNM5inTsjDQNEPGRd2YmrWa5xKIKOp2J2tj2BBq2hRatf5Gj5jgWjJN1bBhNQXeR4_nu_vg22diqjb-EFwbWbGRHDFZ5EPRuujZpYOPMYCp9sHuVDhWlFSnJqtTk9WpyerSZMuM_jDaJpWsdykou_2XfDiTFgB-JRHBpWT8B4gPgqU
CODEN ITASE9
CitedBy_id crossref_primary_10_1016_j_epsr_2024_111151
crossref_primary_10_3390_machines12030185
crossref_primary_10_1049_gtd2_13215
Cites_doi 10.1109/tasc.2013.2238574
10.1109/TASC.2017.2652330
10.1109/TEC.2021.3094308
10.1109/5.30749
10.1007/3-540-46145-0_17
10.1109/TPWRD.2017.2680459
10.1109/TASC.2019.2903740
10.1109/TASC.2021.3057032
10.1109/TIE.2018.2835386
10.1109/TASC.2012.2233261
10.1109/TASC.2021.3060364
10.1088/0953-2048/28/12/123001
10.1109/TASC.2018.2824337
10.1109/ICEngTechnol.2017.8308186
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TASC.2023.3248541
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-2515
EndPage 6
ExternalDocumentID 10_1109_TASC_2023_3248541
10053992
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
VH1
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-c98fedd6235bdfb2edd349e058b6239bff26eb1d8ca294dc7253c92c1a6d2b1e3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965054100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8223
IngestDate Mon Jun 30 10:11:34 EDT 2025
Tue Nov 18 20:48:39 EST 2025
Sat Nov 29 06:16:19 EST 2025
Wed Aug 27 02:25:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-c98fedd6235bdfb2edd349e058b6239bff26eb1d8ca294dc7253c92c1a6d2b1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6282-9581
0000-0003-2819-7506
PQID 2797298465
PQPubID 85434
PageCount 6
ParticipantIDs proquest_journals_2797298465
ieee_primary_10053992
crossref_primary_10_1109_TASC_2023_3248541
crossref_citationtrail_10_1109_TASC_2023_3248541
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on applied superconductivity
PublicationTitleAbbrev TASC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Lee (ref18) 2015
ref12
ref15
ref14
ref11
ref10
ref17
ref16
(ref1) 2009
ref8
ref7
ref9
ref4
(ref2) 2009
ref3
ref6
Cohen (ref13) 1995
ref5
References_xml – ident: ref3
  doi: 10.1109/tasc.2013.2238574
– issue: 1020339
  year: 2009
  ident: ref2
  article-title: Program on technology innovation: Transient response of a superconducting DC long length cable system using voltage source converters
  publication-title: Elect. Power Res. Inst.
– start-page: 1
  volume-title: Proc. 9th Int. Conf. Insulated Power Cables
  year: 2015
  ident: ref18
  article-title: Diagnostics of control and instrumentation cables in nuclear powerplant via time-frequency domain reflectometry with optimal reference signal
– ident: ref9
  doi: 10.1109/TASC.2017.2652330
– ident: ref5
  doi: 10.1109/TEC.2021.3094308
– start-page: 113
  volume-title: Time-Frequency Analysis
  year: 1995
  ident: ref13
  article-title: The Wigner Distribution
– ident: ref12
  doi: 10.1109/5.30749
– ident: ref14
  doi: 10.1007/3-540-46145-0_17
– ident: ref15
  doi: 10.1109/TPWRD.2017.2680459
– ident: ref7
  doi: 10.1109/TASC.2019.2903740
– ident: ref10
  doi: 10.1109/TASC.2021.3057032
– ident: ref11
  doi: 10.1109/TIE.2018.2835386
– ident: ref17
  doi: 10.1109/TASC.2012.2233261
– ident: ref8
  doi: 10.1109/TASC.2021.3060364
– year: 2009
  ident: ref1
  article-title: Superconducting power cables technology watch
– ident: ref4
  doi: 10.1088/0953-2048/28/12/123001
– ident: ref6
  doi: 10.1109/TASC.2018.2824337
– ident: ref16
  doi: 10.1109/ICEngTechnol.2017.8308186
SSID ssj0014845
Score 2.382406
Snippet Since high-temperature superconductor (HTS) based HVDC systems are affected by temperature and cooling system performance, noise, the monitoring system which...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Anomalies
Anomaly detection
Artificial neural networks
CNN
Convolutional neural networks
Cooling systems
Fault severity classifier
Feature extraction
High temperature superconductors
HTS-based HVDC
HVDC transmission
Image acquisition
Image processing
Image reconstruction
Noise monitoring
Power cables
Quench
Superconducting cables
Time-frequency analysis
Title Time-frequency Domain Monitoring Method for the Fault of HTS HVDC Systems Based on AI Classifiers
URI https://ieeexplore.ieee.org/document/10053992
https://www.proquest.com/docview/2797298465
Volume 33
WOSCitedRecordID wos000965054100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2515
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014845
  issn: 1051-8223
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6oKOiDl6k4nZIHn4TMNk3X5nFOx3xQBKfsraS5wGC2sovgv_ckrTIRBd9COSklX5LzpTnnfADnSW6jKJGMhjKUlMeppQI9HeUytjFPbKqY9mITyf19OhqJhzpZ3efCGGN88Jlpu6a_y9elWrhfZbjCA19IdRVWk6RTJWt9XRnw1CsSI18IKXq9qL7CDANxOew-9tpOJ7wduQpePPzmhLyqyo-t2PuX_s4_v2wXtmsiSboV8nuwYooGbC2VF2zAhg_vVLN9kC7Tg9ppFTf9Tq7LFzkuSLWgnTG580rSBCksQUpI-nIxmZPSksHwkQyer3ukLm1OrtDtaVIWpHtLvKLm2Do17QN46t8MewNaiytQxQSfUyVSa7RG9hPn2uYM2xEXJojTHJ-J3FrWwX1cp0qivVYJiyMlmAplR7M8NNEhrBVlYY6A2FwZjkMuEWCucyG0VTHSTistwxNd2ITgc7QzVVcedwIYk8yfQAKROYAyB1BWA9SEi68ur1XZjb-MDxwiS4YVGE1ofWKa1StzlrFE4HkCWVd8_Eu3E9h0b6-i_FqwNp8uzCmsq7f5eDY985PuA2Bw0zg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4NNrTxMAYrosCYH3hCckkcm8SPpaxqNagmURBvkeMfUqUumfoDif9-ZydFIAQSb1Z0ViJ_tu9zfHcfwHFauCRJFaOxihXlInNUoqejXAkneOoyzUwQm0hHo-zuTv5pktVDLoy1NgSf2Y5vhrt8U-ml_1WGKzwKhVTX4KPgnEV1utbjpQHPgiYxMoaYot9LmkvMOJKn4-51r-OVwjuJr-HF42duKOiqvNiMg4fpb73z277B14ZKkm6N_TZ8sOUObD4pMLgDGyHAU8-_g_K5HtTN6sjpB3JR_VWTktRL2huTq6AlTZDEEiSFpK-W0wWpHBmMr8ng9qJHmuLm5BwdnyFVSbpDEjQ1J87rabfgpv9r3BvQRl6Baib5gmqZOWsM8h9RGFcwbCdc2khkBT6ThXPsDHdyk2mF9kanTCRaMh2rM8OK2Ca7sF5Wpd0D4gptOQ65Qoi5KaQ0Tgsknk45hme6uA3RarRz3dQe9xIY0zycQSKZe4ByD1DeANSGk8cu_-rCG28ZtzwiTwxrMNpwuMI0b9bmPGepxBMF8i6x_0q3n_B5ML66zC-Ho98H8MW_qY75O4T1xWxpf8Anfb-YzGdHYQL-B4ZW1n8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-frequency+Domain+Monitoring+Method+for+the+Fault+of+HTS+HVDC+Systems+Based+on+AI+Classifiers&rft.jtitle=IEEE+transactions+on+applied+superconductivity&rft.au=Sim%2C+Yeon-Sub&rft.au=Chang%2C+Seung+Jin&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1051-8223&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FTASC.2023.3248541&rft.externalDocID=10053992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8223&client=summon