High-Dimensional Multi-Objective Bayesian Optimization With Block Coordinate Updates: Case Studies in Intelligent Transportation System

Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based Bayesian optimization methods to find the Pareto fronts due to the curse of dimensionality and the boundary issue in the acquisition function...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 25; číslo 1; s. 1 - 12
Hlavní autoři: Wang, Hongyan, Xu, Hua, Zhang, Zeqiu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based Bayesian optimization methods to find the Pareto fronts due to the curse of dimensionality and the boundary issue in the acquisition function optimization. This paper presents a multi-objective Bayesian optimization method with block coordinate updates, Block-MOBO, to solve high-dimensional expensive multi-objective problems. Block-MOBO first partitions the decision variable space into different blocks, each of which includes a low-dimensional multi-objective problem. At each iteration, one block is considered and the decision variables not in this block are approximated by context-vector generation embedded with the Pareto prior knowledge thus promoting convergence. To tackle the boundary issue, we present <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula>-greedy acquisition function in a Bayesian and multi-objective fashion, which recommends candidates either from the exploitation-exploration trade-off perspective or with probability <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula> from the Pareto dominance relationship perspective. We verify the effectiveness of Block-MOBO by comparing it with other multi-objective Bayesian methods on two real-world optimization problems in transportation system and three multi-objective synthetic test suites. The experimental results show that Block-MOBO can find more evenly distributed and non-dominated solutions in the whole search space with lower complexity compared with other state-of-the-art approaches. Our analyses illustrate that block coordinate updates and <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula>-greedy acquisition function contribute to computational complexity reduction and convergence-diversity trade-offs, respectively.
AbstractList Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based Bayesian optimization methods to find the Pareto fronts due to the curse of dimensionality and the boundary issue in the acquisition function optimization. This paper presents a multi-objective Bayesian optimization method with block coordinate updates, Block-MOBO, to solve high-dimensional expensive multi-objective problems. Block-MOBO first partitions the decision variable space into different blocks, each of which includes a low-dimensional multi-objective problem. At each iteration, one block is considered and the decision variables not in this block are approximated by context-vector generation embedded with the Pareto prior knowledge thus promoting convergence. To tackle the boundary issue, we present [Formula Omitted]-greedy acquisition function in a Bayesian and multi-objective fashion, which recommends candidates either from the exploitation-exploration trade-off perspective or with probability [Formula Omitted] from the Pareto dominance relationship perspective. We verify the effectiveness of Block-MOBO by comparing it with other multi-objective Bayesian methods on two real-world optimization problems in transportation system and three multi-objective synthetic test suites. The experimental results show that Block-MOBO can find more evenly distributed and non-dominated solutions in the whole search space with lower complexity compared with other state-of-the-art approaches. Our analyses illustrate that block coordinate updates and [Formula Omitted]-greedy acquisition function contribute to computational complexity reduction and convergence-diversity trade-offs, respectively.
Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based Bayesian optimization methods to find the Pareto fronts due to the curse of dimensionality and the boundary issue in the acquisition function optimization. This paper presents a multi-objective Bayesian optimization method with block coordinate updates, Block-MOBO, to solve high-dimensional expensive multi-objective problems. Block-MOBO first partitions the decision variable space into different blocks, each of which includes a low-dimensional multi-objective problem. At each iteration, one block is considered and the decision variables not in this block are approximated by context-vector generation embedded with the Pareto prior knowledge thus promoting convergence. To tackle the boundary issue, we present <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula>-greedy acquisition function in a Bayesian and multi-objective fashion, which recommends candidates either from the exploitation-exploration trade-off perspective or with probability <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula> from the Pareto dominance relationship perspective. We verify the effectiveness of Block-MOBO by comparing it with other multi-objective Bayesian methods on two real-world optimization problems in transportation system and three multi-objective synthetic test suites. The experimental results show that Block-MOBO can find more evenly distributed and non-dominated solutions in the whole search space with lower complexity compared with other state-of-the-art approaches. Our analyses illustrate that block coordinate updates and <inline-formula> <tex-math notation="LaTeX">\epsilon</tex-math> </inline-formula>-greedy acquisition function contribute to computational complexity reduction and convergence-diversity trade-offs, respectively.
Author Zhang, Zeqiu
Xu, Hua
Wang, Hongyan
Author_xml – sequence: 1
  givenname: Hongyan
  orcidid: 0000-0002-5138-3158
  surname: Wang
  fullname: Wang, Hongyan
  organization: Department of Computer Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Hua
  orcidid: 0000-0002-7401-307X
  surname: Xu
  fullname: Xu, Hua
  organization: Department of Computer Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Zeqiu
  surname: Zhang
  fullname: Zhang, Zeqiu
  organization: Department of Computer Science and Technology, State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing, China
BookMark eNp9UE1PGzEQtSoqFWh_QKUeLPW8wWPvl3sroUAkqhwS1OPKeGdhwsbe2g5S-gf422y0HBCHnt5o5r03eu-EHTnvkLGvIGYAQp-tF-vVTAqpZkrmIEr9gR1DUdSZEFAeHWaZZ1oU4hM7iXEzbvMC4Jg9X9P9Q3ZBW3SRvDM9_73rE2XLuw3aRE_Iz80eIxnHl0OiLf0zaeTxP5Qe-Hnv7SOfex9aciYhvx3aEeIPPjcR-SrtWsLIyfGFS9j3dI8u8XUwLg4-pMlptY8Jt5_Zx870Eb-84im7vfy1nl9nN8urxfznTWalzlNm5J0oarCm7pRpwXaFrctOo1YVqE622iiloS5yW5WdqFujpWlrKxR0UOVSqVP2ffIdgv-7w5iajd-FMXdspIaiUnlZ6ZEFE8sGH2PArhkCbU3YNyCaQ9_Noe_m0Hfz2veoqd5pLE0RUzDU_1f5bVISIr75JHIx3tULcGqR0g
CODEN ITISFG
CitedBy_id crossref_primary_10_1007_s10791_025_09531_3
crossref_primary_10_1109_TIA_2025_3541007
crossref_primary_10_1080_19475705_2024_2399924
crossref_primary_10_1111_mice_13293
crossref_primary_10_1016_j_swevo_2025_101998
crossref_primary_10_1109_TITS_2025_3559058
crossref_primary_10_1109_TSMC_2025_3571717
Cites_doi 10.1109/TEVC.2015.2455812
10.1162/evco.2007.15.1.1
10.1145/3377930.3389816
10.1007/978-3-540-87700-4_78
10.1109/MCI.2017.2742868
10.1109/CEC48606.2020.9185876
10.1145/3321707.3321784
10.1609/aaai.v34i06.6560
10.1137/0111043
10.1007/BF00939948
10.1287/mnsc.16.9.642
10.1109/TEVC.2005.861417
10.1109/TITS.2019.2903824
10.1109/TEVC.2007.892759
10.1109/TEVC.2015.2420112
10.1007/s00500-008-0394-9
10.1145/3425501
10.1609/aaai.v34i03.5623
10.1109/TEVC.2013.2281535
10.1109/TITS.2020.3048959
10.1109/TEVC.2018.2844286
10.1109/TITS.2022.3172420
10.1016/j.neucom.2019.06.025
10.1016/j.swevo.2018.10.007
10.1109/CEC48606.2020.9185674
10.1007/1-84628-137-7_6
10.1109/TITS.2018.2817879
10.1109/TEVC.2016.2622301
10.1109/4235.996017
10.1109/TITS.2020.2979390
10.1109/TITS.2022.3170000
10.1007/s10957-008-9458-3
10.1007/s10107-014-0800-2
10.1109/TEVC.2020.3044711
10.1023/A:1017501703105
10.24963/ijcai.2017/291
10.1109/TCYB.2018.2811761
10.1109/TITS.2020.3045758
10.1109/TITS.2021.3105415
10.1109/TITS.2019.2902927
10.1016/j.asoc.2020.106078
10.1109/TITS.2021.3108851
10.1109/TITS.2017.2769158
10.1109/TEVC.2005.851274
10.1007/978-3-030-58112-1_12
10.1109/TITS.2020.3010726
10.1016/j.ejor.2006.08.008
10.1023/A:1008306431147
10.24963/ijcai.2019/596
10.1109/TITS.2020.2964012
10.1109/TEVC.2015.2443001
10.1109/TEVC.2009.2014361
10.1109/TCYB.2021.3126341
10.1109/TEVC.2013.2281534
10.1007/978-3-319-18842-3
10.1109/CEC48606.2020.9185846
10.1109/TEVC.2011.2161872
10.1109/TEVC.2009.2033671
10.1609/aaai.v31i1.10664
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2023.3241069
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 12
ExternalDocumentID 10_1109_TITS_2023_3241069
10040106
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61673235
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-a2b0581ca8f3ad1cf5c86f9e93713f2d9a3391854c76f08da92ad8c031f174233
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935663800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Mon Jun 30 07:11:40 EDT 2025
Sat Nov 29 06:35:03 EST 2025
Tue Nov 18 22:35:39 EST 2025
Wed Aug 27 02:18:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-a2b0581ca8f3ad1cf5c86f9e93713f2d9a3391854c76f08da92ad8c031f174233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7401-307X
0000-0002-5138-3158
PQID 2915734679
PQPubID 75735
PageCount 12
ParticipantIDs proquest_journals_2915734679
crossref_primary_10_1109_TITS_2023_3241069
crossref_citationtrail_10_1109_TITS_2023_3241069
ieee_primary_10040106
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
Zitzler (ref46) 1999
ref59
ref14
ref58
ref53
ref52
ref11
Djolonga (ref35); 1
ref55
ref10
ref54
Li (ref38); 51
ref17
ref16
ref19
Rolland (ref43); 84
Van Veldhuizen (ref73) 1999
ref51
Jones (ref18) 1998; 13
ref45
ref48
Wang (ref34)
ref47
De Ath (ref62)
ref42
Corne (ref79)
Daulton (ref33) 2021
ref49
Press (ref50) 1988
ref8
ref7
Suzuki (ref29); 119
ref9
ref4
ref3
ref6
ref5
Letham (ref36)
ref40
ref78
ref37
Belakaria (ref28)
ref75
ref30
ref74
ref77
ref2
ref1
ref39
Daulton (ref25)
Kandasamy (ref31); 37
Rana (ref44); 70
ref71
ref70
ref72
Zitzler (ref80) 2001
ref24
ref68
ref23
ref67
Wang (ref32); 70
ref69
ref20
ref64
ref63
ref22
Hernández-Lobato (ref26); 48
ref66
ref21
ref65
ref27
Demšar (ref76) 2006; 7
Kirschner (ref41); 97
ref60
ref61
References_xml – ident: ref59
  doi: 10.1109/TEVC.2015.2455812
– ident: ref78
  doi: 10.1162/evco.2007.15.1.1
– ident: ref61
  doi: 10.1145/3377930.3389816
– ident: ref20
  doi: 10.1007/978-3-540-87700-4_78
– ident: ref77
  doi: 10.1109/MCI.2017.2742868
– start-page: 7823
  volume-title: Proc. 32th Int. Conf. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Max-value entropy search for multi-objective Bayesian optimization
– volume: 97
  start-page: 3429
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref41
  article-title: Adaptive and safe Bayesian optimization in high dimensions via one-dimensional subspaces
– ident: ref15
  doi: 10.1109/CEC48606.2020.9185876
– ident: ref23
  doi: 10.1145/3321707.3321784
– ident: ref30
  doi: 10.1609/aaai.v34i06.6560
– ident: ref56
  doi: 10.1137/0111043
– ident: ref58
  doi: 10.1007/BF00939948
– ident: ref57
  doi: 10.1287/mnsc.16.9.642
– ident: ref70
  doi: 10.1109/TEVC.2005.861417
– ident: ref4
  doi: 10.1109/TITS.2019.2903824
– ident: ref51
  doi: 10.1109/TEVC.2007.892759
– ident: ref63
  doi: 10.1109/TEVC.2015.2420112
– year: 2021
  ident: ref33
  article-title: Multi-objective Bayesian optimization over high-dimensional search spaces
  publication-title: arXiv:2109.10964
– ident: ref74
  doi: 10.1007/s00500-008-0394-9
– ident: ref60
  doi: 10.1145/3425501
– ident: ref39
  doi: 10.1609/aaai.v34i03.5623
– start-page: 1
  volume-title: Proc. 33th Int. Conf. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Differentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization
– volume: 119
  start-page: 9279
  volume-title: Proc. 37th Int. Conf. Mach. Learn.
  ident: ref29
  article-title: Multi-objective Bayesian optimization using Pareto-frontier entropy
– volume: 84
  start-page: 298
  volume-title: Proc. 21st Int. Conf. Artif. Intell. Statist.
  ident: ref43
  article-title: High-dimensional Bayesian optimization via additive models with overlapping groups
– ident: ref52
  doi: 10.1109/TEVC.2013.2281535
– ident: ref8
  doi: 10.1109/TITS.2020.3048959
– volume: 51
  start-page: 884
  volume-title: Proc. 19th Int. Conf. Artif. Intell. Statist.
  ident: ref38
  article-title: High dimensional Bayesian optimization via restricted projection pursuit models
– ident: ref69
  doi: 10.1109/TEVC.2018.2844286
– ident: ref13
  doi: 10.1109/TITS.2022.3172420
– ident: ref27
  doi: 10.1016/j.neucom.2019.06.025
– start-page: 1
  volume-title: Evolutionary algorithms for multiobjective optimization: Methods and applications
  year: 1999
  ident: ref46
– ident: ref24
  doi: 10.1016/j.swevo.2018.10.007
– start-page: 283
  volume-title: Proc. 3rd Annu. Conf. Genetic Evol. Comput.
  ident: ref79
  article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization
– ident: ref14
  doi: 10.1109/CEC48606.2020.9185674
– ident: ref68
  doi: 10.1007/1-84628-137-7_6
– ident: ref12
  doi: 10.1109/TITS.2018.2817879
– ident: ref22
  doi: 10.1109/TEVC.2016.2622301
– ident: ref64
  doi: 10.1109/4235.996017
– volume-title: Numerical Recipes in C: The Art of Scientific Computing
  year: 1988
  ident: ref50
– ident: ref10
  doi: 10.1109/TITS.2020.2979390
– ident: ref6
  doi: 10.1109/TITS.2022.3170000
– ident: ref54
  doi: 10.1007/s10957-008-9458-3
– ident: ref55
  doi: 10.1007/s10107-014-0800-2
– volume: 7
  start-page: 1
  year: 2006
  ident: ref76
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: ref17
  doi: 10.1109/TEVC.2020.3044711
– ident: ref53
  doi: 10.1023/A:1017501703105
– ident: ref40
  doi: 10.24963/ijcai.2017/291
– ident: ref48
  doi: 10.1109/TCYB.2018.2811761
– ident: ref5
  doi: 10.1109/TITS.2020.3045758
– ident: ref11
  doi: 10.1109/TITS.2021.3105415
– ident: ref1
  doi: 10.1109/TITS.2019.2902927
– start-page: 1778
  volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell.
  ident: ref34
  article-title: Bayesian optimization in high dimensions via random embeddings
– start-page: 1546
  volume-title: Proc. 33th Int. Conf. Neural Inf. Process. Syst.
  ident: ref36
  article-title: Re-examining linear embeddings for high-dimensional Bayesian optimization
– start-page: 787
  volume-title: Proc. Genetic Evol. Comput. Conf.
  ident: ref62
  article-title: ϵ-shotgun: ϵ-greedy batch Bayesian optimisation
– ident: ref71
  doi: 10.1016/j.asoc.2020.106078
– ident: ref3
  doi: 10.1109/TITS.2021.3108851
– ident: ref9
  doi: 10.1109/TITS.2017.2769158
– year: 2001
  ident: ref80
  article-title: Spea2: Improving the strength Pareto evolutionary algorithm
– ident: ref19
  doi: 10.1109/TEVC.2005.851274
– ident: ref37
  doi: 10.1007/978-3-030-58112-1_12
– ident: ref7
  doi: 10.1109/TITS.2020.3010726
– volume: 48
  start-page: 1492
  volume-title: Proc. 33rd Int. Conf. Mach. Learn.
  ident: ref26
  article-title: Predictive entropy search for multi-objective Bayesian optimization
– volume: 37
  start-page: 295
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref31
  article-title: High dimensional Bayesian optimisation and bandits via additive models
– ident: ref65
  doi: 10.1016/j.ejor.2006.08.008
– volume: 70
  start-page: 2883
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref44
  article-title: High dimensional Bayesian optimization with elastic Gaussian process
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: ref18
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– ident: ref42
  doi: 10.24963/ijcai.2019/596
– ident: ref2
  doi: 10.1109/TITS.2020.2964012
– ident: ref49
  doi: 10.1109/TEVC.2015.2443001
– ident: ref72
  doi: 10.1109/TEVC.2009.2014361
– volume: 70
  start-page: 3656
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref32
  article-title: Batched high-dimensional Bayesian optimization via structural kernel learning
– ident: ref66
  doi: 10.1109/TCYB.2021.3126341
– ident: ref67
  doi: 10.1109/TEVC.2013.2281534
– volume-title: Evolutionary Computation
  year: 1999
  ident: ref73
  article-title: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations
– ident: ref47
  doi: 10.1007/978-3-319-18842-3
– ident: ref16
  doi: 10.1109/CEC48606.2020.9185846
– ident: ref75
  doi: 10.1109/TEVC.2011.2161872
– volume: 1
  start-page: 1025
  volume-title: Proc. 26th Int. Conf. Neural Inf. Process. Syst.
  ident: ref35
  article-title: High-dimensional Gaussian process bandits
– ident: ref21
  doi: 10.1109/TEVC.2009.2033671
– ident: ref45
  doi: 10.1609/aaai.v31i1.10664
SSID ssj0014511
Score 2.4862604
Snippet Many transportation system problems can be formulated as high-dimensional expensive multi-objective problems. They are challenging for Gaussian process-based...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> theta</tex-math> </inline-formula>-dominance rank
Additives
Bayes methods
Bayesian analysis
Complexity
Computational modeling
Convergence
convergence-diversity trade-offs
Dimensionality reduction
Gaussian process
Gaussian processes
High-dimensional expensive multi-objective problems
Intelligent transportation systems
Iterative methods
multi-objective Bayesian optimization
Multiple objective analysis
Optimization
Tradeoffs
Transportation
Title High-Dimensional Multi-Objective Bayesian Optimization With Block Coordinate Updates: Case Studies in Intelligent Transportation System
URI https://ieeexplore.ieee.org/document/10040106
https://www.proquest.com/docview/2915734679
Volume 25
WOSCitedRecordID wos000935663800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aXOjCZ8VqlSxcCdPOI_O47my1WJBWsMXuhjSTwfqYlnYq-AX-trnJtFREwd0skjBwZu4z51xCzhWSIESArcEAq1UAFk-AWSqWV-HzMApSXxOF78JOJxoM4L4gq2sujJRSXz6TNXzUvfxkLOZYKqujuhnmMOtkPQwDQ9ZatgxQaEuLo7rMAttftDAdG-q9du-hhnPCayp8UPvhmxPSU1V-mGLtX1o7_3yzXbJdBJL0yiC_R9Zktk-2VuQFD8gnXuKwrlG_32hvUE23tbrDZ2PmaIN_SGRR0q6yHG8FJZM-jvIn2lBe7oU2xyo5HWUqIKX9CRYHZpe0qRwfLe4f0lFG20tVz5wutdLNSUYPvUz6rZte89YqBi9YwgWWW9wd2n7kCB6lHk8ckfpCgQYStfO81E2Aex4oR89EGKR2lHBweRIJZR9SBzu_3iEpZeNMHhEKDBXncMi6dFkixZCHGJKKiPFQSsEqxF4gEYtClRyHY7zGOjuxIUbwYgQvLsCrkIvllomR5PhrcRnRWllogKqQ6gLvuPhrZ7ELjh96ynXA8S_bTsimOp2ZGkyVlPLpXJ6SDfGej2bTM_1BfgGppt5H
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBtYiy-sAJKSWL02S4QQFRUQoSRXCLXMcRZUkRDUh8Ab-Nx04rEAKJWw62E-k5M-MZvzcAOxpJlLJOpcE6ZasQHZEid3Qsr8PnblzPQkMUbkXtdnx7i5clWd1wYZRS5vKZqtGjqeWnfflKqbI9UjejM8w4TIac-66la42KBiS1ZeRRfe6gGw6LmJ6Le51m56pGncJrOoDQK-A3N2T6qvwwxsbDnMz_89sWYK4MJdmBxX4RxlS-BLNfBAaX4YOucThHpOBv1TeYIdw6F917a-jYoXhXxKNkF9p2PJWkTHbTK-7YofZzD6zR18fTXq5DUnb9TOmBwT5raNfHyhuIrJez5kjXs2AjtXS7klVEr8D1yXGnceqUrRcc6SMvHOF33TD2pIizQKSezEKpYUNF6nlB5qcoggC1q-cyqmdunAr0RRpLbSEyj2q_wQpM5P1crQJDTppz1GZd-TxVsisiCkplzEWklORVcIdIJLLUJaf2GI-JOZ-4mBB4CYGXlOBVYXc05dmKcvw1uEJofRlogarCxhDvpPxvB4mPXhgF2nng2i_TtmH6tHPeSlrN9tk6zOg3cZuR2YCJ4uVVbcKUfCt6g5ctszk_AV2x4Y4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Dimensional+Multi-Objective+Bayesian+Optimization+With+Block+Coordinate+Updates%3A+Case+Studies+in+Intelligent+Transportation+System&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wang%2C+Hongyan&rft.au=Xu%2C+Hua&rft.au=Zhang%2C+Zeqiu&rft.date=2024-01-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=25&rft.issue=1&rft.spage=884&rft.epage=895&rft_id=info:doi/10.1109%2FTITS.2023.3241069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2023_3241069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon