Data-Driven Joint Distributionally Robust Chance-Constrained Operation for Multiple Integrated Electricity and Heating Systems

Integrating heating and electricity networks offers extra flexibility to the energy system operation while improving energy utilization efficiency. This paper proposes a data-driven joint distributionally robust chance-constrained (DRCC) operation model for multiple integrated electricity and heatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy Jg. 15; H. 3; S. 1782 - 1798
Hauptverfasser: Zhai, Junyi, Jiang, Yuning, Zhou, Ming, Shi, Yuanming, Chen, Wei, Jones, Colin N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1949-3029, 1949-3037
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrating heating and electricity networks offers extra flexibility to the energy system operation while improving energy utilization efficiency. This paper proposes a data-driven joint distributionally robust chance-constrained (DRCC) operation model for multiple integrated electricity and heating systems (IEHSs). Flexible reserve resources in IEHS are exploited to mitigate the uncertainty of renewable energy. A distributed and parallel joint DRCC operation framework is developed to preserve the decision-making independence of multiple IEHSs, where the optimized CVaR approximation (OCA) approach is developed to transform the local joint DRCC model into a tractable model. An alternating minimization algorithm is presented to improve the tightness of OCA for joint chance constraints by iteratively tuning the OCA. Case studies on the IEEE 33-bus system with four IEHSs and the IEEE 141-bus system with eight IEHSs demonstrate the effectiveness of the proposed approach.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3029
1949-3037
DOI:10.1109/TSTE.2024.3379162