Selector: Ensemble-Based Automated Algorithm Configuration
Solvers contain parameters that influence their performance and these must be set by the user to ensure that high-quality solutions are generated, or optimal solutions are found quickly. Manually setting these parameters is tedious and error-prone, since search spaces may be large or even infinite....
Gespeichert in:
| Veröffentlicht in: | Journal of heuristics Jg. 31; H. 3; S. 28 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
Springer US
01.09.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1572-9397, 1381-1231, 1572-9397 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Solvers contain parameters that influence their performance and these must be set by the user to ensure that high-quality solutions are generated, or optimal solutions are found quickly. Manually setting these parameters is tedious and error-prone, since search spaces may be large or even infinite. Existing approaches to automate the task of algorithm configuration (AC) make use of a single machine learning model that is trained on previous runtime data and used to create or evaluate promising new configurations. We combine a variety of successful models from different AC approaches into an ensemble that proposes new configurations. To this end, each model in the ensemble suggests configurations and a hyper-configurable selection algorithm chooses a subset of configurations to match the amount of computational resources available. We call this approach Selector , and we examine its performance against the state-of-the-art AC methods PyDGGA and SMAC, respectively. The new configurator will be made available as an open source software package. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1572-9397 1381-1231 1572-9397 |
| DOI: | 10.1007/s10732-025-09561-6 |