Selector: Ensemble-Based Automated Algorithm Configuration

Solvers contain parameters that influence their performance and these must be set by the user to ensure that high-quality solutions are generated, or optimal solutions are found quickly. Manually setting these parameters is tedious and error-prone, since search spaces may be large or even infinite....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heuristics Jg. 31; H. 3; S. 28
Hauptverfasser: Weiß, Dimitri, Schede, Elias, Tierney, Kevin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Springer US 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:1572-9397, 1381-1231, 1572-9397
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Solvers contain parameters that influence their performance and these must be set by the user to ensure that high-quality solutions are generated, or optimal solutions are found quickly. Manually setting these parameters is tedious and error-prone, since search spaces may be large or even infinite. Existing approaches to automate the task of algorithm configuration (AC) make use of a single machine learning model that is trained on previous runtime data and used to create or evaluate promising new configurations. We combine a variety of successful models from different AC approaches into an ensemble that proposes new configurations. To this end, each model in the ensemble suggests configurations and a hyper-configurable selection algorithm chooses a subset of configurations to match the amount of computational resources available. We call this approach Selector , and we examine its performance against the state-of-the-art AC methods PyDGGA and SMAC, respectively. The new configurator will be made available as an open source software package.
AbstractList Solvers contain parameters that influence their performance and these must be set by the user to ensure that high-quality solutions are generated, or optimal solutions are found quickly. Manually setting these parameters is tedious and error-prone, since search spaces may be large or even infinite. Existing approaches to automate the task of algorithm configuration (AC) make use of a single machine learning model that is trained on previous runtime data and used to create or evaluate promising new configurations. We combine a variety of successful models from different AC approaches into an ensemble that proposes new configurations. To this end, each model in the ensemble suggests configurations and a hyper-configurable selection algorithm chooses a subset of configurations to match the amount of computational resources available. We call this approach Selector , and we examine its performance against the state-of-the-art AC methods PyDGGA and SMAC, respectively. The new configurator will be made available as an open source software package.
ArticleNumber 28
Author Schede, Elias
Weiß, Dimitri
Tierney, Kevin
Author_xml – sequence: 1
  givenname: Dimitri
  surname: Weiß
  fullname: Weiß, Dimitri
– sequence: 2
  givenname: Elias
  surname: Schede
  fullname: Schede, Elias
– sequence: 3
  givenname: Kevin
  surname: Tierney
  fullname: Tierney, Kevin
BookMark eNpNkE1LAzEURYNUsK3-AUEouI4meZNJ0l0t9QMKLtR1mKRJnTIzqUlm4b936rhwde7i3vfgzNCkC51D6JqSO0qIuE-UCGCYMI6J4iXF5RmaUi4YVqDE5F--QLOUDoQQJTlM0fLNNc7mEJeLTZdcaxqHH6rkdotVn0Nb5VNq9iHW-bNdrEPn630fq1yH7hKd-6pJ7uqPc_TxuHlfP-Pt69PLerXFlqkiY6UkUOmFk14a5hVzXllRGDOAGqp2pS-kNGCtVRUVBbfAiLfClsxwEALm6Ha8e4zhq3cp60PoYze81MAAOKeSsKHFxpaNIaXovD7Guq3it6ZEnxzp0ZEeHOlfR7ocRjfjyNnQ1UmfkAYZGoAUjMIPr7BkyQ
Cites_doi 10.1007/978-3-030-80223-3_2
10.1007/978-3-030-92121-7_2
10.1016/j.ejor.2013.10.043
10.1016/j.eswa.2008.01.039
10.1016/j.artint.2016.04.003
10.1007/s10994-022-06161-4
10.1007/978-3-030-72013-1_16
10.1016/j.eswa.2023.121674
10.1613/jair.2861
10.1007/978-3-031-24866-5_13
10.1609/aaai.v31i1.10660
10.1007/978-3-642-25566-3_40
10.1007/s43069-024-00327-7
10.1145/3377930.3390211
10.1109/4235.585893
10.1016/j.orp.2016.09.002
10.1007/978-3-642-04244-7_14
10.1007/978-3-319-09584-4_4
10.1162/evco_a_00242
10.1007/978-3-642-33558-7_11
10.1109/MCAS.2006.1688199
10.1016/j.ejor.2015.08.018
10.1007/978-3-030-53552-0_22
10.1613/jair.1.13676
ContentType Journal Article
Copyright The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
AAYXX
CITATION
JQ2
DOI 10.1007/s10732-025-09561-6
DatabaseName EconStor
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-9397
ExternalDocumentID 10_1007_s10732_025_09561_6
330421
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OT2
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAYXX
CITATION
AESKC
JQ2
ID FETCH-LOGICAL-c294t-998318f7e8f8b2f92ef9c74bbf9c1b19d6f488b3ccc9a1745c320fc7c62b53773
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001536561900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1572-9397
1381-1231
IngestDate Wed Nov 05 06:24:53 EST 2025
Sat Nov 29 07:33:47 EST 2025
Fri Dec 05 12:07:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-998318f7e8f8b2f92ef9c74bbf9c1b19d6f488b3ccc9a1745c320fc7c62b53773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9039-3869
OpenAccessLink https://www.econstor.eu/handle/10419/330421
PQID 3233551802
PQPubID 26068
ParticipantIDs proquest_journals_3233551802
crossref_primary_10_1007_s10732_025_09561_6
econis_econstor_330421
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: Boston
PublicationTitle Journal of heuristics
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References G Di Liberto (9561_CR10) 2016; 248
P Kerschke (9561_CR21) 2019; 27
DH Wolpert (9561_CR37) 1997; 1
9561_CR8
9561_CR7
C Ansótegui (9561_CR6) 2021
9561_CR9
9561_CR11
9561_CR33
9561_CR32
9561_CR31
9561_CR30
9561_CR15
9561_CR14
9561_CR36
9561_CR13
9561_CR12
9561_CR34
9561_CR19
9561_CR18
9561_CR17
9561_CR16
9561_CR38
9561_CR2
9561_CR1
9561_CR4
9561_CR3
MT Lindauer (9561_CR24) 2022; 23
9561_CR5
M López-Ibáñez (9561_CR26) 2014; 235
9561_CR22
A Tornede (9561_CR35) 2023; 112
9561_CR20
9561_CR25
9561_CR23
9561_CR29
9561_CR28
9561_CR27
References_xml – volume: 23
  start-page: 54
  year: 2022
  ident: 9561_CR24
  publication-title: J. Mach. Learn. Res.
– ident: 9561_CR27
– ident: 9561_CR4
– ident: 9561_CR23
– ident: 9561_CR3
  doi: 10.1007/978-3-030-80223-3_2
– start-page: 7
  volume-title: Learning and Intelligent Optimization
  year: 2021
  ident: 9561_CR6
  doi: 10.1007/978-3-030-92121-7_2
– volume: 235
  start-page: 569
  issue: 3
  year: 2014
  ident: 9561_CR26
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.10.043
– ident: 9561_CR29
  doi: 10.1016/j.eswa.2008.01.039
– ident: 9561_CR8
  doi: 10.1016/j.artint.2016.04.003
– volume: 112
  start-page: 1253
  issue: 4
  year: 2023
  ident: 9561_CR35
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-022-06161-4
– ident: 9561_CR32
  doi: 10.1007/978-3-030-72013-1_16
– ident: 9561_CR20
  doi: 10.1016/j.eswa.2023.121674
– ident: 9561_CR36
– ident: 9561_CR17
  doi: 10.1613/jair.2861
– ident: 9561_CR34
– ident: 9561_CR38
  doi: 10.1007/978-3-031-24866-5_13
– ident: 9561_CR2
  doi: 10.1609/aaai.v31i1.10660
– ident: 9561_CR15
– ident: 9561_CR13
– ident: 9561_CR19
– ident: 9561_CR16
  doi: 10.1007/978-3-642-25566-3_40
– ident: 9561_CR22
  doi: 10.1007/s43069-024-00327-7
– ident: 9561_CR28
  doi: 10.1145/3377930.3390211
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 9561_CR37
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: 9561_CR1
– ident: 9561_CR25
  doi: 10.1016/j.orp.2016.09.002
– ident: 9561_CR7
  doi: 10.1007/978-3-642-04244-7_14
– ident: 9561_CR18
  doi: 10.1007/978-3-319-09584-4_4
– volume: 27
  start-page: 3
  issue: 1
  year: 2019
  ident: 9561_CR21
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00242
– ident: 9561_CR5
  doi: 10.1007/978-3-642-33558-7_11
– ident: 9561_CR30
  doi: 10.1109/MCAS.2006.1688199
– volume: 248
  start-page: 943
  issue: 3
  year: 2016
  ident: 9561_CR10
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.08.018
– ident: 9561_CR12
– ident: 9561_CR14
– ident: 9561_CR33
– ident: 9561_CR11
  doi: 10.1007/978-3-030-53552-0_22
– ident: 9561_CR9
– ident: 9561_CR31
  doi: 10.1613/jair.1.13676
SSID ssj0009853
Score 2.4090023
Snippet Solvers contain parameters that influence their performance and these must be set by the user to ensure that high-quality solutions are generated, or optimal...
SourceID proquest
crossref
econis
SourceType Aggregation Database
Index Database
Publisher
StartPage 28
SubjectTerms Algorithm configuration
Algorithms
Automation
Configurations
CVRP
Ensemble optimization
Genetic algorithms
Integer programming
Machine learning
MAX-SAT
Methods
MILP
Open source software
Optimization
Parameters
SAT
TSP
Title Selector: Ensemble-Based Automated Algorithm Configuration
URI https://www.econstor.eu/handle/10419/330421
https://www.proquest.com/docview/3233551802
Volume 31
WOSCitedRecordID wos001536561900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1572-9397
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009853
  issn: 1572-9397
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4hhIMeRFEiimYHb9pkbbd144YG4sEQE5Rwa9auxSUwDBv-_bbbCBr14Km9rF2-19f3Y3vfA7hxYyVxrBOk41AiD8cYhQljiGkjEsmoCstkzuyJTSbhfB49N-Duzy_4tsiNUYJs21VLmoeR5dfGQVWsNZ3tGXbDknISGxOEzHWM6wqZ35f4ZoVaNvRM8x-3cWlixu3_vdwxHNWupDOsZH8CDZV1oL1r0-DUWtuBwy-cg6cwmKoqUz9wRlmuVmKp0L0xZYkz3BZr47_a2XKx3qTF28qxBYHpYlsdkzN4HY9eHh5R3UABSRJ5BTKhlFFZzVSoQ0F0RJSOJPOEMAMWOEoCbfRXUCllFJvQxJeUuFoyGRDhU8ZoF5rZOlPn4BhHRAXKPusTj2oaByISZg2pPOkz6vXgdgcof694MvieEdmCxA1IvASJBz3oVphzO9jfQHmZV8E96O9kwGtlyjkllFriOJdc_GuXSzgglWSQi_vQLDZbdQUt-VGk-ea6PD2fcVq6Pg
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selector%3A+Ensemble-Based+Automated+Algorithm+Configuration&rft.jtitle=Journal+of+heuristics&rft.au=Wei%C3%9F%2C+Dimitri&rft.au=Schede%2C+Elias&rft.au=Tierney%2C+Kevin&rft.date=2025-09-01&rft.issn=1381-1231&rft.eissn=1572-9397&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1007%2Fs10732-025-09561-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10732_025_09561_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-9397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-9397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-9397&client=summon