Attack Classification of Imbalanced Intrusion Data for IoT network Using Ensemble Learning-based Deep Neural Network
With the increase in popularity of Internet of Things (IoT) and rise in interconnected devices, the need to foster effective security mechanism to handle vulnerabilities and risks in IoT networks has become evident. Security mechanisms such as Intrusion Detection System (IDS) are designed and deploy...
Uložené v:
| Vydané v: | IEEE internet of things journal Ročník 10; číslo 13; s. 1 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the increase in popularity of Internet of Things (IoT) and rise in interconnected devices, the need to foster effective security mechanism to handle vulnerabilities and risks in IoT networks has become evident. Security mechanisms such as Intrusion Detection System (IDS) are designed and deployed in IoT network environment to ensure security and prevent unauthorized access to system and resources. Moreover, there have been efforts to design IDS using various Deep Learning (DL) techniques, as these techniques possess intriguing characteristic of representing data with high abstraction. However, intrusion detection datasets used in literature possess imbalance class distribution, which is one of the challenging issue in developing coherent and potent intrusion detection and classification system. In this paper, we aim to address class imbalance problem using ensemble learning approach, namely, Bagging classifier, that uses Deep Neural Network (DNN) as base estimator. Here, in the proposed approach, the training process of DNN is influenced by including class weights that advocates to create balanced training subsets for DNN. The desirability and merit of the proposed approach can be considered as two-fold as it aims to achieve generalization along with addressing the class imbalance problem in intrusion detection datasets. The performance of the proposed approach is evaluated using four intrusion detection datasets, namely, NSL-KDD, UNSW_NB-15, CIC-IDS-2017, and BoT-IoT. Result analysis of the proposed approach is illustrated using various evaluation metrics, namely, accuracy, precision, recall, f-score, and False Positive Rate (FPR). Moreover, results of the proposed approach are also statistically tested using Wilcoxon signed-rank test. |
|---|---|
| AbstractList | With the increase in popularity of Internet of Things (IoT) and rise in interconnected devices, the need to foster effective security mechanism to handle vulnerabilities and risks in IoT networks has become evident. Security mechanisms such as Intrusion Detection System (IDS) are designed and deployed in IoT network environment to ensure security and prevent unauthorized access to system and resources. Moreover, there have been efforts to design IDS using various Deep Learning (DL) techniques, as these techniques possess intriguing characteristic of representing data with high abstraction. However, intrusion detection datasets used in literature possess imbalance class distribution, which is one of the challenging issue in developing coherent and potent intrusion detection and classification system. In this paper, we aim to address class imbalance problem using ensemble learning approach, namely, Bagging classifier, that uses Deep Neural Network (DNN) as base estimator. Here, in the proposed approach, the training process of DNN is influenced by including class weights that advocates to create balanced training subsets for DNN. The desirability and merit of the proposed approach can be considered as two-fold as it aims to achieve generalization along with addressing the class imbalance problem in intrusion detection datasets. The performance of the proposed approach is evaluated using four intrusion detection datasets, namely, NSL-KDD, UNSW_NB-15, CIC-IDS-2017, and BoT-IoT. Result analysis of the proposed approach is illustrated using various evaluation metrics, namely, accuracy, precision, recall, f-score, and False Positive Rate (FPR). Moreover, results of the proposed approach are also statistically tested using Wilcoxon signed-rank test. With the increase in popularity of Internet of Things (IoT) and the rise in interconnected devices, the need to foster effective security mechanism to handle vulnerabilities and risks in IoT networks has become evident. Security mechanisms, such as intrusion detection system (IDS), are designed and deployed in IoT network environment to ensure security and prevent unauthorized access to system and resources. Moreover, there have been efforts to design IDS using various deep learning (DL) techniques, as these techniques possess the intriguing characteristic of representing data with high abstraction. However, the intrusion detection data sets used in literature possess imbalance class distribution, which is one of the challenging issues in developing coherent and potent intrusion detection and classification system. In this article, we aim to address class imbalance problem using ensemble learning approach, namely, the Bagging classifier, that uses a deep neural network (DNN) as a base estimator. Here, in the proposed approach, the training process of DNN is influenced by, including class weights that advocates to create balanced training subsets for DNN. The desirability and merit of the proposed approach can be considered as twofold as it aims to achieve generalization along with addressing the class imbalance problem in intrusion detection data sets. The performance of the proposed approach is evaluated using four intrusion detection data sets, namely, NSL-KDD, UNSW_NB-15, CIC-IDS-2017, and BoT-IoT. The result analysis of the proposed approach is illustrated using various evaluation metrics, namely, accuracy, precision, recall, [Formula Omitted]-score, and false positive rate (FPR). Moreover, the results of the proposed approach are also statistically tested using Wilcoxon signed-rank test. |
| Author | Thakkar, Ankit Lohiya, Ritika |
| Author_xml | – sequence: 1 givenname: Ankit orcidid: 0000-0001-8328-6101 surname: Thakkar fullname: Thakkar, Ankit organization: Computer Science and Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India – sequence: 2 givenname: Ritika orcidid: 0000-0003-1794-8300 surname: Lohiya fullname: Lohiya, Ritika organization: Computer Science and Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India |
| BookMark | eNp9kEtLAzEQgIMoqNUfIHgIeN6aTPZ5lPpaKfbSnpfZ3YmsbpOapIj_3tR6EA-e5sF8M8N3yg6NNcTYhRRTKUV1_VQvllMQoKYK0rSU4oCdgIIiSfMcDn_lx-zc-1chRMQyWeUnLNyEgN0bn43o_aCHDsNgDbea1-sWRzQd9bw2wW39rn-LAbm2jtd2yQ2FD-ve-MoP5oXfGU_rdiQ-J3QmdpIWfYRviTb8mbYOxxi-iTN2pHH0dP4TJ2x1f7ecPSbzxUM9u5knHVRpSIqyVwVWPUIbfxVt1eYxpV7mBekiFkWrMtkVugddgkANUFKqMAeSWd-CmrCr_d6Ns-9b8qF5tVtn4skGSigrVWV5Fqfkfqpz1ntHutm4YY3us5Gi2fltdn6bnd_mx29kij9MN4RvdcHhMP5LXu7JgYh-XRJpCqJUX2Iuiug |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_3390_electronics13091711 crossref_primary_10_1109_ACCESS_2025_3582391 crossref_primary_10_1109_JIOT_2024_3406386 crossref_primary_10_1109_TCYB_2024_3393020 crossref_primary_10_1016_j_array_2025_100501 crossref_primary_10_1007_s10586_024_05065_3 crossref_primary_10_1007_s11831_023_09943_8 crossref_primary_10_3390_sym17030314 crossref_primary_10_1007_s10922_025_09926_z crossref_primary_10_32604_cmc_2024_051769 crossref_primary_10_32604_cmc_2024_054836 crossref_primary_10_3390_math12070948 crossref_primary_10_1016_j_jii_2025_100777 crossref_primary_10_1109_ACCESS_2025_3538319 crossref_primary_10_32604_cmc_2025_060357 crossref_primary_10_1016_j_jfranklin_2024_107440 crossref_primary_10_1109_COMST_2024_3382470 crossref_primary_10_1007_s10207_024_00896_y crossref_primary_10_1631_FITEE_2400556 crossref_primary_10_35377_saucis___1663435 crossref_primary_10_1016_j_cose_2024_104209 crossref_primary_10_1038_s41598_025_16553_w crossref_primary_10_3390_fi17010030 crossref_primary_10_1109_JIOT_2023_3314667 crossref_primary_10_1007_s11277_024_11260_7 crossref_primary_10_1016_j_adhoc_2024_103540 crossref_primary_10_1016_j_future_2024_107630 crossref_primary_10_1016_j_inffus_2025_103473 crossref_primary_10_3390_bdcc8090116 crossref_primary_10_3390_s24155048 crossref_primary_10_3390_sym16091121 crossref_primary_10_1016_j_ins_2024_121103 crossref_primary_10_1109_ACCESS_2025_3582445 crossref_primary_10_3390_electronics13153014 crossref_primary_10_1038_s41598_025_05217_4 crossref_primary_10_1016_j_eswa_2024_126033 crossref_primary_10_1016_j_apacoust_2025_110627 crossref_primary_10_1016_j_sciaf_2025_e02809 crossref_primary_10_1109_ACCESS_2025_3538170 crossref_primary_10_3390_app15147984 crossref_primary_10_7717_peerj_cs_2745 crossref_primary_10_1007_s10207_025_00983_8 crossref_primary_10_1109_ACCESS_2024_3405628 crossref_primary_10_1109_ACCESS_2024_3465045 crossref_primary_10_1109_ACCESS_2025_3551750 crossref_primary_10_1002_itl2_531 crossref_primary_10_1038_s41598_025_97378_5 crossref_primary_10_1109_JIOT_2024_3397364 crossref_primary_10_1007_s10586_025_05415_9 crossref_primary_10_1007_s10586_024_04404_8 crossref_primary_10_1007_s11227_024_06475_1 crossref_primary_10_1016_j_iot_2023_100936 crossref_primary_10_1002_spy2_497 crossref_primary_10_1109_TCE_2023_3319439 crossref_primary_10_1038_s41598_024_56126_x crossref_primary_10_1002_cpe_8088 crossref_primary_10_1109_JIOT_2024_3387294 crossref_primary_10_1007_s10586_024_04964_9 crossref_primary_10_1016_j_asoc_2025_113420 crossref_primary_10_1016_j_asoc_2024_111378 crossref_primary_10_1016_j_vehcom_2025_100970 crossref_primary_10_12720_jait_16_5_632_647 crossref_primary_10_3390_s25154845 crossref_primary_10_3390_app13095427 crossref_primary_10_3390_s23167215 crossref_primary_10_1007_s10586_025_05374_1 crossref_primary_10_1109_ACCESS_2024_3473289 crossref_primary_10_1016_j_iot_2024_101336 crossref_primary_10_1016_j_neucom_2024_128492 crossref_primary_10_1049_ntw2_12128 |
| Cites_doi | 10.1109/ICCCN.2018.8487460 10.1109/ICCSN.2016.7586590 10.1007/s11831-020-09496-0 10.1007/s11063-013-9286-9 10.1007/s10462-021-10037-9 10.1109/ISCC.2017.8024620 10.1109/LSENS.2018.2879990 10.1007/978-981-33-6173-7_7 10.1002/int.22590 10.1613/jair.953 10.1016/j.swevo.2019.100631 10.1109/ACCESS.2020.3045078 10.1186/s40537-020-00390-x 10.1613/jair.1.11192 10.1002/sam.10061 10.3390/sym13010004 10.1002/ep.13018 10.1145/3199478.3199489 10.1186/s40537-018-0151-6 10.1016/j.ins.2019.07.070 10.1007/s12652-020-02167-9 10.1016/j.procs.2020.04.085 10.1109/JIOT.2020.3048439 10.1109/TSMCC.2011.2161285 10.1007/BF00058655 10.1016/j.procs.2020.03.330 10.1016/j.future.2019.05.041 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2023.3244810 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JIOT_2023_3244810 10044208 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-78d37a9da2b1960b9b6a2bed167ef7b6a7b351c7fd2f820af228e43a62e15db23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018925700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Mon Nov 24 18:14:29 EST 2025 Sat Nov 29 06:17:14 EST 2025 Tue Nov 18 22:41:47 EST 2025 Wed Aug 27 02:18:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-78d37a9da2b1960b9b6a2bed167ef7b6a7b351c7fd2f820af228e43a62e15db23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8328-6101 0000-0003-1794-8300 |
| PQID | 2828939565 |
| PQPubID | 2040421 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2023_3244810 proquest_journals_2828939565 ieee_primary_10044208 crossref_citationtrail_10_1109_JIOT_2023_3244810 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 koroniotis (ref6) 2019; 100 ref31 ref11 ref10 ref32 ref2 ref17 ref16 ref19 ghojogh (ref26) 2019 goodfellow (ref7) 2016; 1 ref24 ref23 ref25 ref20 ref22 ref21 ref28 kyriakides (ref30) 2019 ref27 ref29 ref8 aminanto (ref1) 2016 ref9 ref4 ref3 ref5 hodo (ref18) 2017 |
| References_xml | – ident: ref19 doi: 10.1109/ICCCN.2018.8487460 – ident: ref8 doi: 10.1109/ICCSN.2016.7586590 – ident: ref10 doi: 10.1007/s11831-020-09496-0 – ident: ref15 doi: 10.1007/s11063-013-9286-9 – ident: ref31 doi: 10.1007/s10462-021-10037-9 – ident: ref20 doi: 10.1109/ISCC.2017.8024620 – ident: ref21 doi: 10.1109/LSENS.2018.2879990 – ident: ref27 doi: 10.1007/978-981-33-6173-7_7 – volume: 1 year: 2016 ident: ref7 publication-title: Deep Learning – ident: ref4 doi: 10.1002/int.22590 – year: 2019 ident: ref30 publication-title: Hands-On Ensemble Learning with Python Build highly optimized ensemble machine learning models using scikit-learn and Keras – ident: ref32 doi: 10.1613/jair.953 – ident: ref3 doi: 10.1016/j.swevo.2019.100631 – ident: ref9 doi: 10.1109/ACCESS.2020.3045078 – year: 2017 ident: ref18 article-title: Shallow and deep networks intrusion detection system: A taxonomy and survey publication-title: arXiv 1701 02145 – ident: ref14 doi: 10.1186/s40537-020-00390-x – year: 2019 ident: ref26 article-title: The theory behind overfitting, cross validation, regularization, bagging, and boosting: Tutorial publication-title: arXiv 1905 12787 – ident: ref12 doi: 10.1613/jair.1.11192 – ident: ref24 doi: 10.1002/sam.10061 – start-page: 1 year: 2016 ident: ref1 article-title: Deep learning in intrusion detection system: An overview publication-title: Proc Int Res Conf Eng Technol (IRCET) – ident: ref29 doi: 10.3390/sym13010004 – ident: ref25 doi: 10.1002/ep.13018 – ident: ref22 doi: 10.1145/3199478.3199489 – ident: ref11 doi: 10.1186/s40537-018-0151-6 – ident: ref13 doi: 10.1016/j.ins.2019.07.070 – ident: ref2 doi: 10.1007/s12652-020-02167-9 – ident: ref16 doi: 10.1016/j.procs.2020.04.085 – ident: ref5 doi: 10.1109/JIOT.2020.3048439 – ident: ref17 doi: 10.1109/TSMCC.2011.2161285 – ident: ref23 doi: 10.1007/BF00058655 – ident: ref28 doi: 10.1016/j.procs.2020.03.330 – volume: 100 start-page: 779 year: 2019 ident: ref6 article-title: Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.05.041 |
| SSID | ssj0001105196 |
| Score | 2.5607166 |
| Snippet | With the increase in popularity of Internet of Things (IoT) and rise in interconnected devices, the need to foster effective security mechanism to handle... With the increase in popularity of Internet of Things (IoT) and the rise in interconnected devices, the need to foster effective security mechanism to handle... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Bagging Class Imbalance Class Weights Classification Classification algorithms Cybersecurity Datasets Deep learning Deep Neural Network Ensemble learning Internet of Things Intrusion detection Intrusion Detection System Intrusion detection systems Machine learning Neural networks Rank tests Training |
| Title | Attack Classification of Imbalanced Intrusion Data for IoT network Using Ensemble Learning-based Deep Neural Network |
| URI | https://ieeexplore.ieee.org/document/10044208 https://www.proquest.com/docview/2828939565 |
| Volume | 10 |
| WOSCitedRecordID | wos001018925700056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHry4PlZcX-TgSehumz7SHMUHrsjqYQVvJY-JiG53cau_30yaVUEUvKUlU0K-pDOTzDdDyHFWKg5OM0a5Ys5BsUZGSlkTCQFGqFzH3Hikb_hoVD48iLtAVvdcGADwwWfQx6a_yzdT_YZHZQOf3YwhtXeZc96Stb4OVBK0Ropwc5nEYnA9vB33sTx431kNWYkk2W-6xxdT-fEH9mrlsvPPAW2Q9WA_0tMW8E2yBPUW6SxqM9CwVbdJc9o0Uj9TX_QSw4E8AnRq6XCiMJxRg6HDGikX-P5cNpI6-5UOp2Nat6Hh1IcT0It6DhP1AjSkYn2MUPMZeg4wo5jbww1n1Ep0yf3lxfjsKgoVFiLNRNZEvDQpl8JIptzUxUqowjXBJAUHy90DV2meaG4Ns85UkJaxErJUFgyS3CiW7pCVelrDLqEgpUpiKITOVGZ5LMEKIxJbpFbJMs57JF7MfaVD-nGsgvFSeTckFhXCVSFcVYCrR04-RWZt7o2_OncRn28dW2h65GCBcBW257zyfmbqXMN87xexfbKGX28Dcw_IioMDDsmqfm-e5q9HfuV9ABsl2Ws |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQgrR7ocB2RaGAD5yQ0ibOw_Gxoq0aKIVDkXqL_BivEG1abbP8fjyOC5UQSNycyKNY_uzMjD3fDCFvs1JxcJoxyhVzDoo1MlLKmkgIMELlOubGI73kq1W52YgvgazuuTAA4IPPYIRNf5dv9voej8rGPrsZQ2rvw9w1ko6u9ftIJUF7pAh3l0ksxh-qz-sRFggfObshK5Eme6Z9fDmVP_7BXrHMe_85pCfkcbAg6aSD_Cl5AM0z0jtVZ6Bhs16TdtK2Un-nvuwlBgR5DOje0mqnMKBRg6FVg6QLfD-VraTOgqXVfk2bLjic-oACOmuOsFNboCEZ622Eus_QKcCBYnYPN5xVJ9EnX-ez9ftFFGosRJqJrI14aVIuhZFMuamLlVCFa4JJCg6Wuweu0jzR3BpmnbEgLWMlZKksGCS5USy9IRfNvoHnhIKUKomhEDpTmeWxBCuMSGyRWiXLOB-Q-DT3tQ4JyLEOxrb2jkgsaoSrRrjqANeAvPslcuiyb_yrcx_xOevYQTMgwxPCddigx9p7mqlzDvMXfxF7Qy4X60_LelmtPr4kV_ilLkx3SC4cNPCKPNI_2m_Hu9d-Ff4Ejsrcsg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attack+Classification+of+Imbalanced+Intrusion+Data+for+IoT+network+Using+Ensemble+Learning-based+Deep+Neural+Network&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Thakkar%2C+Ankit&rft.au=Lohiya%2C+Ritika&rft.date=2023-07-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJIOT.2023.3244810&rft.externalDocID=10044208 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |