An Unsupervised Snow Segmentation Approach Based on Dual-polarized Scattering Mechanism and Deep Neural Network

Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and hydropower production. Most of the existing dry and wet snow identification methods were based on expensive quad-pol SAR with finite generalizability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 61; S. 1
Hauptverfasser: Liu, Chang, Li, Zhen, Wu, Zhipeng, Huang, Lei, Zhang, Ping, Li, Gang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and hydropower production. Most of the existing dry and wet snow identification methods were based on expensive quad-pol SAR with finite generalizability, while dual-pol SAR with larger coverage, longer time series and open availability has more advantages. In this study, an unsupervised algorithm for dry and wet snow discrimination, NSAE-WFCM, is proposed based on a variety of polarimetric features derived from H-α decomposition in dual-pol mode using C-band Sentinel-1 SAR data. NSAE-WFCM constructs a deep training network using the pixel neighborhood-based sparse autoencoder (NSAE) to optimize polarimetric parameters, and inputs reconstructed features with different weights into feature-weighted fuzzy C-means clustering (WFCM) to distinguish dry and wet snow for each underlying surface. Ground observation was carried out during the snow melting period of March 2021 in Altay, China, to validate dual-pol NSAE-WFCM method with an overall accuracy and kappa coefficient of 88.8% and 0.68, respectively. The results show that NSAE-WFCM's accuracy is similar to that of the quad-pol SAR-based dry and wet snow result (90.0%), and significantly better than that of previously published approaches extended to dual-pol SAR, such as SVM (76.7%), H-α-Wishart (65.5%), SPAN-based threshold method (51.7%), and wet snow-based method (43.1%). Therefore, the NSAE-WFCM algorithm improves the ability to classify wet and dry snow based on dual-pol polarimetric features, overcomes the high dependence of existing methods on quad-pol SAR data, and reduces manual interpretation by using unsupervised clustering.
AbstractList Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and hydropower production. Most of the existing dry and wet snow identification methods were based on expensive quad-pol SAR with finite generalizability, while dual-pol SAR with larger coverage, longer time series and open availability has more advantages. In this study, an unsupervised algorithm for dry and wet snow discrimination, NSAE-WFCM, is proposed based on a variety of polarimetric features derived from H-α decomposition in dual-pol mode using C-band Sentinel-1 SAR data. NSAE-WFCM constructs a deep training network using the pixel neighborhood-based sparse autoencoder (NSAE) to optimize polarimetric parameters, and inputs reconstructed features with different weights into feature-weighted fuzzy C-means clustering (WFCM) to distinguish dry and wet snow for each underlying surface. Ground observation was carried out during the snow melting period of March 2021 in Altay, China, to validate dual-pol NSAE-WFCM method with an overall accuracy and kappa coefficient of 88.8% and 0.68, respectively. The results show that NSAE-WFCM's accuracy is similar to that of the quad-pol SAR-based dry and wet snow result (90.0%), and significantly better than that of previously published approaches extended to dual-pol SAR, such as SVM (76.7%), H-α-Wishart (65.5%), SPAN-based threshold method (51.7%), and wet snow-based method (43.1%). Therefore, the NSAE-WFCM algorithm improves the ability to classify wet and dry snow based on dual-pol polarimetric features, overcomes the high dependence of existing methods on quad-pol SAR data, and reduces manual interpretation by using unsupervised clustering.
Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and hydropower production. Most of the existing dry and wet snow identification methods were based on expensive quad-pol synthetic aperture radar (SAR) with finite generalizability, while dual-pol SAR with larger coverage, longer time series, and open availability has more advantages. In this study, an unsupervised algorithm for dry and wet snow discrimination, neighborhood-based sparse autoencoder (NSAE)-weighted fuzzy C-means clustering (WFCM), is proposed based on a variety of polarimetric features derived from the [Formula Omitted]–[Formula Omitted] decomposition in the dual-pol mode using the C-band Sentinel-1 SAR data. NSAE-WFCM constructs a deep training network using the pixel NSAE to optimize polarimetric parameters and inputs reconstructed features with different weights into feature-WFCM to distinguish dry and wet snow for each underlying surface. Ground observation was carried out during the snow melting period of March 2021 in Altay, China, to validate the dual-pol NSAE-WFCM method with an overall accuracy and a Kappa coefficient of 88.8% and 0.68, respectively. The results show that NSAE-WFCM’s accuracy is similar to that of the quad-pol SAR-based dry and wet snow result (90.0%) and significantly better than that of previously published approaches extended to dual-pol SAR, such as support vector machine (SVM) (76.7%), H–[Formula Omitted]-Wishart (65.5%), total power-based method (51.7%), and wet snow-based method (43.1%). Therefore, the NSAE-WFCM algorithm improves the ability to classify wet and dry snow based on dual-pol polarimetric features, overcomes the high dependence of existing methods on quad-pol SAR data, and reduces manual interpretation by using unsupervised clustering.
Author Wu, Zhipeng
Li, Zhen
Huang, Lei
Li, Gang
Zhang, Ping
Liu, Chang
Author_xml – sequence: 1
  givenname: Chang
  orcidid: 0000-0003-0513-8183
  surname: Liu
  fullname: Liu, Chang
  organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0003-3491-0697
  surname: Li
  fullname: Li, Zhen
  organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Zhipeng
  surname: Wu
  fullname: Wu, Zhipeng
  organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
  organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Ping
  orcidid: 0000-0002-8401-4818
  surname: Zhang
  fullname: Zhang, Ping
  organization: Aerospace Information Research Institute, Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Gang
  orcidid: 0000-0001-9755-2781
  surname: Li
  fullname: Li, Gang
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
BookMark eNp9kMlKBDEQhoMoOC4PIHgIeO4xSS9JjuMuuICj56ZM12i0J2mTbkWf3jTjQTx4qqL4v6ri2yLrzjskZI-zKedMH96f382ngol8motKSCHXyISXpcpYVRTrZMK4rjKhtNgkWzG-MMaLkssJ8TNHH1wcOgzvNmJD585_0Dk-LdH10Fvv6KzrggfzTI9gDKTJyQBt1vkWgv0aEQN9j8G6J3qN5hmcjUsKrqEniB29wSFAm0r_4cPrDtlYQBtx96duk4ez0_vji-zq9vzyeHaVGaGLPqseeWVYYwQ0yihIvVpIpo0SUmtRsNxUrJI5KgYFYGMWquGAQmJTom5EmW-Tg9Xe9PvbgLGvX_wQXDpZpxVSaJnspBRfpUzwMQZc1F2wSwifNWf16LUevdaj1_rHa2LkH8bYlak-gG3_JfdXpEXEX5eYypku82-v-4jy
CODEN IGRSD2
CitedBy_id crossref_primary_10_5194_tc_19_1621_2025
crossref_primary_10_1007_s10489_024_05297_1
Cites_doi 10.1109/TGRS.2021.3137588
10.1080/01969727308546046
10.1016/B978-0-12-819764-6.00004-1
10.1109/ICIG.2009.165
10.1016/j.jhydrol.2017.07.051
10.1109/36.551935
10.1080/10106049.2022.2043450
10.1109/IGARSS.2014.6947062
10.1080/01431161.2012.748992
10.1109/36.842004
10.1017/9781009325844
10.1109/36.885196
10.1109/LGRS.2017.2764123
10.1109/LGRS.2021.3050921
10.1007/s12524-016-0609-y
10.1016/j.rse.2011.03.004
10.1029/2019WR025449
10.1016/j.jag.2018.09.011
10.1016/j.rse.2011.05.028
10.1109/TGRS.2013.2281462
10.1109/TGRS.2008.2000818
10.3390/rs70607447
10.1016/j.patcog.2009.04.013
10.1109/JSTARS.2014.2323199
10.1109/JSTARS.2018.2817687
10.1109/TPAMI.2006.168
10.1016/j.isprsjprs.2020.08.021
10.1016/0034-4257(89)90101-6
10.3390/rs8040348
10.1016/j.envpol.2020.116234
10.1016/j.rse.2018.09.003
10.1016/0273-1177(89)90493-6
10.1109/TGRS.2021.3064309
10.1109/LGRS.2012.2219848
10.1029/2005RG000183
10.1038/s41597-021-01059-7
10.1109/TGRS.2005.852084
10.1109/IGARSS.2004.1370697
10.1109/JSTARS.2017.2673409
10.1186/s10033-021-00569-0
10.1109/IGARSS.2008.4779900
10.3390/rs70911602
10.3390/rs11080895
10.1109/TGRS.2006.886176
10.1016/j.isprsjprs.2015.05.001
10.1093/acprof:oso/9780199569731.001.0001
10.1016/j.jhydrol.2016.10.025
10.1109/LGRS.2015.2478256
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3262727
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3262727
10083095
Genre orig-research
GrantInformation_xml – fundername: the National Key Research and Development Program of China
  grantid: 2018YFA0605403
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-6b16c0dc2ad8c8a6c08f709c827992403c60673e80a4aedcf8d1ae27ed5e9d253
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965182200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:27:00 EDT 2025
Tue Nov 18 22:35:25 EST 2025
Sat Nov 29 03:32:20 EST 2025
Wed Aug 27 02:21:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-6b16c0dc2ad8c8a6c08f709c827992403c60673e80a4aedcf8d1ae27ed5e9d253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9755-2781
0000-0003-0513-8183
0000-0002-8401-4818
0000-0003-3491-0697
PQID 2797297155
PQPubID 85465
PageCount 1
ParticipantIDs crossref_primary_10_1109_TGRS_2023_3262727
proquest_journals_2797297155
crossref_citationtrail_10_1109_TGRS_2023_3262727
ieee_primary_10083095
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
Cloude (ref18)
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Ng (ref27) 2011
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
Wang (ref37) 2018; 33
References_xml – ident: ref24
  doi: 10.1109/TGRS.2021.3137588
– ident: ref28
  doi: 10.1080/01969727308546046
– start-page: 1
  volume-title: Proc. POLINSAR
  ident: ref18
  article-title: The dual polarization entropy/alpha decomposition: A PALSAR case study
– ident: ref29
  doi: 10.1016/B978-0-12-819764-6.00004-1
– ident: ref33
  doi: 10.1109/ICIG.2009.165
– ident: ref2
  doi: 10.1016/j.jhydrol.2017.07.051
– ident: ref11
  doi: 10.1109/36.551935
– ident: ref35
  doi: 10.1080/10106049.2022.2043450
– ident: ref22
  doi: 10.1109/IGARSS.2014.6947062
– volume: 33
  start-page: 12
  issue: 1
  year: 2018
  ident: ref37
  article-title: Investigation on snow characteristics and their distribution in China
  publication-title: Adv. Earth Sci.
– ident: ref40
  doi: 10.1080/01431161.2012.748992
– ident: ref8
  doi: 10.1109/36.842004
– ident: ref4
  doi: 10.1017/9781009325844
– ident: ref5
  doi: 10.1109/36.885196
– ident: ref16
  doi: 10.1109/LGRS.2017.2764123
– ident: ref25
  doi: 10.1109/LGRS.2021.3050921
– ident: ref48
  doi: 10.1007/s12524-016-0609-y
– ident: ref19
  doi: 10.1016/j.rse.2011.03.004
– ident: ref15
  doi: 10.1029/2019WR025449
– ident: ref46
  doi: 10.1016/j.jag.2018.09.011
– ident: ref6
  doi: 10.1016/j.rse.2011.05.028
– ident: ref32
  doi: 10.1109/TGRS.2013.2281462
– ident: ref20
  doi: 10.1109/TGRS.2008.2000818
– ident: ref51
  doi: 10.3390/rs70607447
– ident: ref30
  doi: 10.1016/j.patcog.2009.04.013
– ident: ref36
  doi: 10.1109/JSTARS.2014.2323199
– ident: ref47
  doi: 10.1109/JSTARS.2018.2817687
– ident: ref31
  doi: 10.1109/TPAMI.2006.168
– ident: ref38
  doi: 10.1016/j.isprsjprs.2020.08.021
– ident: ref43
  doi: 10.1016/0034-4257(89)90101-6
– ident: ref42
  doi: 10.3390/rs8040348
– ident: ref3
  doi: 10.1016/j.envpol.2020.116234
– ident: ref34
  doi: 10.1016/j.rse.2018.09.003
– ident: ref7
  doi: 10.1016/0273-1177(89)90493-6
– ident: ref44
  doi: 10.1109/TGRS.2021.3064309
– ident: ref41
  doi: 10.1109/LGRS.2012.2219848
– ident: ref39
  doi: 10.1029/2005RG000183
– ident: ref45
  doi: 10.1038/s41597-021-01059-7
– start-page: 1
  volume-title: Sparse Autoencoder
  year: 2011
  ident: ref27
– ident: ref13
  doi: 10.1109/TGRS.2005.852084
– ident: ref49
  doi: 10.1109/IGARSS.2004.1370697
– ident: ref14
  doi: 10.1109/JSTARS.2017.2673409
– ident: ref21
  doi: 10.1186/s10033-021-00569-0
– ident: ref50
  doi: 10.1109/IGARSS.2008.4779900
– ident: ref9
  doi: 10.3390/rs70911602
– ident: ref10
  doi: 10.3390/rs11080895
– ident: ref12
  doi: 10.1109/TGRS.2006.886176
– ident: ref17
  doi: 10.1016/j.isprsjprs.2015.05.001
– ident: ref26
  doi: 10.1093/acprof:oso/9780199569731.001.0001
– ident: ref1
  doi: 10.1016/j.jhydrol.2016.10.025
– ident: ref23
  doi: 10.1109/LGRS.2015.2478256
SSID ssj0014517
Score 2.4347184
Snippet Distribution of snow and its melting is a critical factor affecting local weather, avalanche and flood forecasting, livelihood of people residing, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Artificial neural networks
C band
Clustering
Dry and wet snow
Dual polarization radar
Feature extraction
feature-weighted fuzzy C-means
Flood forecasting
Hydroelectric power
Identification methods
Melting
Methods
Neural networks
polarimetric decomposition
Polarimetry
Radar polarimetry
River discharge
SAR (radar)
Scattering
Snow
Snow avalanches
Snowmelt
sparse autoencoder
Speckle
Support vector machines
Synthetic aperture radar
Training
Weather forecasting
Title An Unsupervised Snow Segmentation Approach Based on Dual-polarized Scattering Mechanism and Deep Neural Network
URI https://ieeexplore.ieee.org/document/10083095
https://www.proquest.com/docview/2797297155
Volume 61
WOSCitedRecordID wos000965182200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BSxwxFH6oWGgPrbVKt7WSQ0-FWTPZzCQ5brW2FxfpKngbYvJSFnR2cXZb8Nebl4myIC30FoYkZObLJO_l5X0fwGehAyrJfVGGOINl7etCV94UQYnKaoXCupDEJtRkoq-uzHlOVk-5MIiYLp_hkIoplu_nbkVHZUdERDOKNsEmbCpV98laTyEDWZU5N7ouohchcgiz5Obo4vvP6ZB0wofRWBGKFGTWNqGkqvJsKU77y-mb_xzZDrzOhiQb98i_hQ1sd-HVGr3gLrxI1ztd9w7m45Zdtt1qQStDh55N2_kfNsVftzn1qGXjTC7OvlqqEJ-crOxNsSDXd3ZPTVyi4ow9szOkfOFZd8ts69kJ4oIRyUcczqS_Vb4Hl6ffLo5_FFlqoXDCyGVRX5e1494J67XTNpZ1UNw4LZQxRNnnalK0Qc2ttOhd0L60KBT6Co0X1Wgfttp5i--BaY5lOdKudNLJaxNsFcKIS1fF6WK8kQPgj9--cZmHnOQwbprkj3DTEFwNwdVkuAbw5anJoifh-FflPcJnrWIPzQAOHhFu8n_aNfH1oneholH14S_NPsJL6r0_dTmAreXdCj_Btvu9nHV3h2kKPgA-_dm7
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BAAEP_NiGKAzwA09I6RzXie3HwhhDbBWinbS3yLPPqNKWVksLEn89PsebKiGQeLMiX-Lkc-w72_d9AG-FDqgk90UZYg-Wta8LXXlTBCUqqxUK60ISm1CTiT47M19zsnrKhUHEdPgMh1RMe_l-4da0VLZPRDSj6BPchjuVlIL36Vo3mwayKnN2dF3EOELkTcySm_3Zp2_TISmFD6O7IhRpyGxMQ0lX5Y_BOM0wh4__s21P4FF2Jdm4x_4p3MJ2Gx5uEAxuw710wNN1O7AYt-y07dZLGhs69GzaLn6yKX6_zMlHLRtnenH23lKFeOVgbS-KJQW_819k4hIZZ7wzO0HKGJ53l8y2nh0gLhnRfMTmTPpz5btwevhx9uGoyGILhRNGror6vKwd905Yr522sayD4sZpoYwh0j5Xk6YNam6lRe-C9qVFodBXaLyoRs9gq120-ByY5liWI-1KJ508N8FWIYy4dFXsMMYbOQB-_e0bl5nISRDjokkRCTcNwdUQXE2GawDvbkyWPQ3HvyrvEj4bFXtoBrB3jXCT_9Suia8X4wsV3aoXfzF7A_ePZifHzfHnyZeX8ICe1K_B7MHW6mqNr-Cu-7Gad1evU3f8Dbj73QI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unsupervised+Snow+Segmentation+Approach+Based+on+Dual-Polarized+Scattering+Mechanism+and+Deep+Neural+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liu%2C+Chang&rft.au=Li%2C+Zhen&rft.au=Wu%2C+Zhipeng&rft.au=Huang%2C+Lei&rft.date=2023-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2023.3262727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3262727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon