An Optimal Geometrical Guidance Law for Impact Time and Angle Control
This article proposes an impact time and angle control guidance law based on geometry without estimating the time-to-go. A moving virtual target is artificially placed on the desired collision line, and the missile pursues the virtual target to satisfy the desired impact angle. The moving speed of t...
Saved in:
| Published in: | IEEE transactions on aerospace and electronic systems Vol. 59; no. 6; pp. 1 - 10 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9251, 1557-9603 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article proposes an impact time and angle control guidance law based on geometry without estimating the time-to-go. A moving virtual target is artificially placed on the desired collision line, and the missile pursues the virtual target to satisfy the desired impact angle. The moving speed of the virtual target is also dynamically adjusted to cater for the impact time constraint. We prove that the proposed geometrical rule ensures target capturability and zero terminal guidance command. Then, the standard optimal control is leveraged to develop an analytical guidance command that drives the missile to converge to the desired collision course. Numerical simulations are conducted to validate the proposed guidance law. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9251 1557-9603 |
| DOI: | 10.1109/TAES.2023.3305974 |