CenterPoint-SE: A Single-Stage Anchor-Free 3-D Object Detection Algorithm With Spatial Awareness Enhancement

Real-time and accurate 3-D object detection is one of the foundational technologies for environmental perception in autonomous vehicles. However, the existing second-stage anchor-based 3-D object detection algorithms have high accuracy, but they are challenging in terms of computation complexity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 24; H. 10; S. 10760 - 10773
Hauptverfasser: Wang, Hai, Tao, Le, Cai, Yingfeng, Chen, Long, Li, Yicheng, Sotelo, Miguel Angel, Li, Zhixiong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1524-9050, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Real-time and accurate 3-D object detection is one of the foundational technologies for environmental perception in autonomous vehicles. However, the existing second-stage anchor-based 3-D object detection algorithms have high accuracy, but they are challenging in terms of computation complexity and latency. Due to poor perception of spatial features, the accuracy of the existing single-stage anchor-free detection algorithms with low latency are difficult to be implemented into autonomous vehicles. Therefore, we focus on enhancing the spatial perception ability of the anchor-free detection network based on CenterPoints. In this paper, we propose a single-stage anchor-free 3-D object detector CenterPoint-Space-Enhancement (CenterPoint-SE) algorithm and construct an efficient 3-D backbone network to extract fine-grained spatial geometric features by introducing a spatial attention mechanism and residual structure. At the same time, a powerful spatial semantic feature fusion module, the enhancement of feature fusion (EF-Fusion), is designed. In addition, we add a lightweight IoU prediction branch to improve the algorithm's perception of various object sizes. Finally, we add a foreground point segmentation auxiliary training branch to enable the 3-D backbone to obtain object boundary features. We use the ONCE dataset to train and validate the proposed model, and the results showed that the proposed CenterPoint-SE achieves 70.33 mAP and an inference speed of 17.15 FPS, outperforming other methods.
AbstractList Real-time and accurate 3-D object detection is one of the foundational technologies for environmental perception in autonomous vehicles. However, the existing second-stage anchor-based 3-D object detection algorithms have high accuracy, but they are challenging in terms of computation complexity and latency. Due to poor perception of spatial features, the accuracy of the existing single-stage anchor-free detection algorithms with low latency are difficult to be implemented into autonomous vehicles. Therefore, we focus on enhancing the spatial perception ability of the anchor-free detection network based on CenterPoints. In this paper, we propose a single-stage anchor-free 3-D object detector CenterPoint-Space-Enhancement (CenterPoint-SE) algorithm and construct an efficient 3-D backbone network to extract fine-grained spatial geometric features by introducing a spatial attention mechanism and residual structure. At the same time, a powerful spatial semantic feature fusion module, the enhancement of feature fusion (EF-Fusion), is designed. In addition, we add a lightweight IoU prediction branch to improve the algorithm’s perception of various object sizes. Finally, we add a foreground point segmentation auxiliary training branch to enable the 3-D backbone to obtain object boundary features. We use the ONCE dataset to train and validate the proposed model, and the results showed that the proposed CenterPoint-SE achieves 70.33 mAP and an inference speed of 17.15 FPS, outperforming other methods.
Author Li, Yicheng
Chen, Long
Wang, Hai
Sotelo, Miguel Angel
Cai, Yingfeng
Tao, Le
Li, Zhixiong
Author_xml – sequence: 1
  givenname: Hai
  orcidid: 0000-0002-9136-8091
  surname: Wang
  fullname: Wang, Hai
  email: wanghai1019@163.com
  organization: School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
– sequence: 2
  givenname: Le
  surname: Tao
  fullname: Tao, Le
  email: 1747524097@qq.com
  organization: School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
– sequence: 3
  givenname: Yingfeng
  orcidid: 0000-0002-0633-9887
  surname: Cai
  fullname: Cai, Yingfeng
  email: caicaixiao0304@126.com
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 4
  givenname: Long
  orcidid: 0000-0002-2079-3867
  surname: Chen
  fullname: Chen, Long
  email: chenlong@ujs.edu.cn
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 5
  givenname: Yicheng
  surname: Li
  fullname: Li, Yicheng
  email: liyucheng070@163.com
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 6
  givenname: Miguel Angel
  orcidid: 0000-0001-8809-2103
  surname: Sotelo
  fullname: Sotelo, Miguel Angel
  email: miguel.sotelo@uah.es
  organization: Department of Computer Engineering, University of Alcal, Alcal de Henares, Madrid, Spain
– sequence: 7
  givenname: Zhixiong
  orcidid: 0000-0002-7265-0008
  surname: Li
  fullname: Li, Zhixiong
  email: zhixiong.li@yonsei.ac.kr
  organization: Yonsei Frontier Laboratory, Yonsei University, Seoul, Republic of Korea
BookMark eNp9UE1LxDAQDaLg5w8QPAQ8Z03SJm28lXX9AEGhKx7LtJ3dzdJN1zSL-O9NWQ_iQRhmhuG9eTPvlBy63iEhl4JPhODmZv40LyeSy2SSyCzJRXZAToRSOeNc6MOxlykzXPFjcjoM6zhNlRAnpJuiC-hfe-sCK2e3tKCldcsOWRlgibRwzar37N4j0oTd0Zd6jU2gdxhisb2jRbfsvQ2rDX2PmZZbCBY6WnyCR4fDQGduBa7BTdQ5J0cL6Aa8-Kln5O1-Np8-sueXh6dp8cwaadLAdJ7Wqm0XBgDyHIyuc6ilyWChNQreYg3QtqkWLWRKG9kkBngM1FpoTFVyRq73e7e-_9jhEKp1v_MuSlYyz2SaqEzlEZXtUY3vh8HjompsgPGp4MF2leDVaG01WluN1lY_1kam-MPcersB__Uv52rPsYj4Cy_iRUYl3-6Whp4
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TIM_2023_3338662
crossref_primary_10_1109_TITS_2024_3429139
Cites_doi 10.1109/CVPR.2018.00472
10.1109/TETCI.2023.3235381
10.1016/j.imavis.2020.103911
10.1109/CVPR42600.2020.01164
10.1109/CVPR42600.2020.01189
10.1109/ICCV48922.2021.00272
10.1109/ICCV.2019.00204
10.1109/ICCV48922.2021.00274
10.1109/TITS.2021.3118698
10.1007/978-3-031-20080-9_3
10.1109/CVPR.2018.00745
10.1109/TITS.2022.3177615
10.1109/CVPR46437.2021.00746
10.3390/s18103337
10.1109/TIM.2021.3065438
10.1609/aaai.v35i2.16207
10.1109/CVPR.2016.90
10.1109/CVPR42600.2020.00252
10.1109/CVPR42600.2020.01054
10.1109/CVPR.2019.01298
10.1109/ICCV.2019.00667
10.5244/C.29.150
10.1109/CVPR42600.2020.00466
10.1177/0278364913491297
10.1109/CVPR52688.2022.00535
10.1109/TPAMI.2020.2977026
10.1109/TITS.2019.2892405
10.1109/CVPR46437.2021.01161
10.1109/ICCV.2017.324
10.1109/JSEN.2020.3020626
10.1109/CVPR42600.2020.01011
10.1109/CVPR.2019.00086
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2023.3273817
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 10773
ExternalDocumentID 10_1109_TITS_2023_3273817
10128795
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB2503302
  funderid: 10.13039/501100012166
– fundername: Key Research and Development Program of Jiangsu Province
  grantid: BE2020083-3
– fundername: National Natural Science Foundation of China
  grantid: 52225212; U20A20333; 52072160
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-684b5ddf9aaa88a96b8ab297af66e10debaadd461da75692c39a09a0e6616e453
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005030100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 09 06:33:56 EST 2025
Tue Nov 18 22:53:28 EST 2025
Sat Nov 29 07:56:38 EST 2025
Wed Aug 27 01:53:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-684b5ddf9aaa88a96b8ab297af66e10debaadd461da75692c39a09a0e6616e453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9136-8091
0000-0002-7265-0008
0000-0001-8809-2103
0000-0002-2079-3867
0000-0002-0633-9887
PQID 2872435758
PQPubID 75735
PageCount 14
ParticipantIDs ieee_primary_10128795
proquest_journals_2872435758
crossref_citationtrail_10_1109_TITS_2023_3273817
crossref_primary_10_1109_TITS_2023_3273817
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref11
ref10
ref32
ge (ref29) 2020
ref2
ref1
loshchilov (ref36) 2017
ref17
ref39
ref16
ref38
ref19
ref18
graham (ref33) 2017
hu (ref30) 2021
ref24
ref23
ref26
ref25
ref20
qi (ref21) 2017; 30
ref22
ren (ref28) 2015; 28
ref27
ref8
ref7
ref9
ref4
ref3
ref5
mao (ref6) 2021
References_xml – ident: ref11
  doi: 10.1109/CVPR.2018.00472
– ident: ref4
  doi: 10.1109/TETCI.2023.3235381
– ident: ref12
  doi: 10.1016/j.imavis.2020.103911
– ident: ref15
  doi: 10.1109/CVPR42600.2020.01164
– ident: ref34
  doi: 10.1109/CVPR42600.2020.01189
– ident: ref25
  doi: 10.1109/ICCV48922.2021.00272
– ident: ref22
  doi: 10.1109/ICCV.2019.00204
– ident: ref19
  doi: 10.1109/ICCV48922.2021.00274
– year: 2017
  ident: ref36
  article-title: Decoupled weight decay regularization
  publication-title: arXiv 1711 05101
– ident: ref31
  doi: 10.1109/TITS.2021.3118698
– ident: ref38
  doi: 10.1007/978-3-031-20080-9_3
– ident: ref9
  doi: 10.1109/CVPR.2018.00745
– ident: ref1
  doi: 10.1109/TITS.2022.3177615
– ident: ref24
  doi: 10.1109/CVPR46437.2021.00746
– ident: ref26
  doi: 10.3390/s18103337
– ident: ref2
  doi: 10.1109/TIM.2021.3065438
– ident: ref17
  doi: 10.1609/aaai.v35i2.16207
– volume: 30
  start-page: 1
  year: 2017
  ident: ref21
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1109/CVPR.2016.90
– ident: ref16
  doi: 10.1109/CVPR42600.2020.00252
– year: 2021
  ident: ref6
  article-title: One million scenes for autonomous driving: ONCE dataset
  publication-title: arXiv 2106 11037
– ident: ref18
  doi: 10.1109/CVPR42600.2020.01054
– ident: ref27
  doi: 10.1109/CVPR.2019.01298
– year: 2020
  ident: ref29
  article-title: AFDet: Anchor free one stage 3D object detection
  publication-title: arXiv 2006 12671
– ident: ref7
  doi: 10.1109/ICCV.2019.00667
– ident: ref32
  doi: 10.5244/C.29.150
– year: 2021
  ident: ref30
  article-title: AFDetV2: Rethinking the necessity of the second stage for object detection from point clouds
  publication-title: arXiv 2112 09205
– ident: ref37
  doi: 10.1109/CVPR42600.2020.00466
– ident: ref14
  doi: 10.1177/0278364913491297
– volume: 28
  start-page: 1
  year: 2015
  ident: ref28
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref39
  doi: 10.1109/CVPR52688.2022.00535
– ident: ref23
  doi: 10.1109/TPAMI.2020.2977026
– ident: ref3
  doi: 10.1109/TITS.2019.2892405
– ident: ref8
  doi: 10.1109/CVPR46437.2021.01161
– ident: ref35
  doi: 10.1109/ICCV.2017.324
– year: 2017
  ident: ref33
  article-title: Submanifold sparse convolutional networks
  publication-title: arXiv 1706 01307
– ident: ref5
  doi: 10.1109/JSEN.2020.3020626
– ident: ref13
  doi: 10.1109/CVPR42600.2020.01011
– ident: ref20
  doi: 10.1109/CVPR.2019.00086
SSID ssj0014511
Score 2.4051924
Snippet Real-time and accurate 3-D object detection is one of the foundational technologies for environmental perception in autonomous vehicles. However, the existing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10760
SubjectTerms 3D object detection
Accuracy
Algorithms
anchor-free
Autonomous vehicles
Computer networks
Detection algorithms
Feature extraction
Location awareness
Object detection
Object recognition
Perception
point cloud
Point cloud compression
single-stage
space feature enhancement
Training
Title CenterPoint-SE: A Single-Stage Anchor-Free 3-D Object Detection Algorithm With Spatial Awareness Enhancement
URI https://ieeexplore.ieee.org/document/10128795
https://www.proquest.com/docview/2872435758
Volume 24
WOSCitedRecordID wos001005030100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9u-KAPfovTKXnwScjs-pEmvg23oSA62ETfSppeXWF2Uqv---bSTgeiIJRSSNKE_tK7Sy73O0JO09SPjWaXLOBaM-QnYTKFLlMglBKmwKnY9W_C21vx-ChHdbC6jYUBAHv4DDr4aH35yVy_4VbZOXJRYXLsBmmEIa-Ctb5cBki0ZclRXZ-ZHhYuzK4jzyfXk3EH84R3PIxEscnJvpWQzaryQxRb_TLc_OfItshGbUjSXoX8NlmBfIesL9EL7pIZbt1CMZpneWnk5gXt0bEpmAEzJuYT0F5uZF_BhgUA9Vif3sW4KUP7UNrzWTntzZ7mRVZOn-mDuVNMX5xhnx8YQWZEJB3kU5w1OLg9cj8cTC6vWJ1dgWlX-iXjwo-DJEmlQlCU5LFQsStDlXIOXSeBWBnZ5_NuosKAS1d7UjnmAqPROfiBt0-a-TyHA0IFSA8DTTgk2leuUGgYCY8rkeg4kGmLOIvPHemaehwzYMwiuwRxZIQIRYhQVCPUImdfTV4q3o2_Ku8hJEsVKzRapL0ANap_zdfIlLjGRjTrpMNfmh2RNXx7dWSvTZpl8QbHZFW_l9lrcWJn3SfcedPF
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD70Mmj3sHa90Gy96GFPA6WOL4q0N7MmNDTLCs1o3owsH7eB1C6uu_396chOVhgrDIwxSEbCn3zO0eV8H8CnPA9T69kVj4QxnPhJuMqxxzVKraUt8Bp2_XF_MpGzmbpuk9VdLgwiusNn2KVHt5efleaZlsrOiYuKxLHXYZOks9p0rdWmAVFtOXpUP-S2jeUmZs9T59PR9KZLSuHdgHJRnDzZHzfkdFX-MsbOwwx3_rNvu_CuDSVZ3GD_Htaw2IO3LwgG92FBi7dYXZfzoraW8wuL2Y0tWCC3QeYdsriw1q_iwwqRBfyCfU9pWYZdYO1OaBUsXtyV1by-f2C39s5IwHhObf6iHDJrJNmguKdxQ507gB_DwfTrJW_1FbjxVVhzIcM0yrJcaYJFK5FKnfqqr3MhsOdlmGpr_ULRy3Q_Eso3gdKevdD6dIFhFBzCRlEWeARMogoo1URgZkLtS02hkQyElplJI5V3wFt-7sS05OOkgbFI3CTEUwkhlBBCSYtQBz6vXnlsmDdeq3xAkLyo2KDRgeMlqEn7cz4ltsS3UaKdKX34x2tnsHU5_TZOxqPJ1UfYppaaA3zHsFFXz3gCb8zPev5UnboR-BsO8NcO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CenterPoint-SE%3A+A+Single-Stage+Anchor-Free+3-D+Object+Detection+Algorithm+With+Spatial+Awareness+Enhancement&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wang%2C+Hai&rft.au=Tao%2C+Le&rft.au=Cai%2C+Yingfeng&rft.au=Chen%2C+Long&rft.date=2023-10-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=10&rft.spage=10760&rft.epage=10773&rft_id=info:doi/10.1109%2FTITS.2023.3273817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2023_3273817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon