CenterPoint-SE: A Single-Stage Anchor-Free 3-D Object Detection Algorithm With Spatial Awareness Enhancement
Real-time and accurate 3-D object detection is one of the foundational technologies for environmental perception in autonomous vehicles. However, the existing second-stage anchor-based 3-D object detection algorithms have high accuracy, but they are challenging in terms of computation complexity and...
Uloženo v:
| Vydáno v: | IEEE transactions on intelligent transportation systems Ročník 24; číslo 10; s. 10760 - 10773 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Real-time and accurate 3-D object detection is one of the foundational technologies for environmental perception in autonomous vehicles. However, the existing second-stage anchor-based 3-D object detection algorithms have high accuracy, but they are challenging in terms of computation complexity and latency. Due to poor perception of spatial features, the accuracy of the existing single-stage anchor-free detection algorithms with low latency are difficult to be implemented into autonomous vehicles. Therefore, we focus on enhancing the spatial perception ability of the anchor-free detection network based on CenterPoints. In this paper, we propose a single-stage anchor-free 3-D object detector CenterPoint-Space-Enhancement (CenterPoint-SE) algorithm and construct an efficient 3-D backbone network to extract fine-grained spatial geometric features by introducing a spatial attention mechanism and residual structure. At the same time, a powerful spatial semantic feature fusion module, the enhancement of feature fusion (EF-Fusion), is designed. In addition, we add a lightweight IoU prediction branch to improve the algorithm's perception of various object sizes. Finally, we add a foreground point segmentation auxiliary training branch to enable the 3-D backbone to obtain object boundary features. We use the ONCE dataset to train and validate the proposed model, and the results showed that the proposed CenterPoint-SE achieves 70.33 mAP and an inference speed of 17.15 FPS, outperforming other methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1524-9050 1558-0016 |
| DOI: | 10.1109/TITS.2023.3273817 |