Hyperspectral Band Selection With Iterative Graph Autoencoder
Hyperspectral band selection (BS) is an important task for hyperspectral image (HSI) processing, which aims to select a discriminative and low-redundant band subset. As a significant cue for BS, structure information describes the cross-band correlation, which brings the redundancy of HSI. Existing...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 61; S. 1 - 13 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hyperspectral band selection (BS) is an important task for hyperspectral image (HSI) processing, which aims to select a discriminative and low-redundant band subset. As a significant cue for BS, structure information describes the cross-band correlation, which brings the redundancy of HSI. Existing methods model structure information via manual rule-based graph construction. However, such a graph construction method fails to model complex and diverse structural relationships of HSI data. To address this problem, we propose a data-driven method, named iterative graph autoencoder for BS (IGAEBS). It adaptively captures structure information by a data-specific automatic construction process, rather than by a fixed empirical design. Specifically, we propose a new unsupervised pretext task to train graph convolution neural networks to extract HSI features. These features are used to construct a graph to represent the structural relationships among bands. To enhance the reliability of the graph, we further design an iterative graph improvement mechanism to progressively refine the structure representation. Using the derived graph, we partition the bands into several clusters and select a representative band from each cluster. During the selection process, both intracluster information and intercluster information are considered to improve the discriminativeness of band subset. Extensive experiments are conducted on three public datasets to validate the superiority of the proposed method compared to other state-of-the-art methods. |
|---|---|
| AbstractList | Hyperspectral band selection (BS) is an important task for hyperspectral image (HSI) processing, which aims to select a discriminative and low-redundant band subset. As a significant cue for BS, structure information describes the cross-band correlation, which brings the redundancy of HSI. Existing methods model structure information via manual rule-based graph construction. However, such a graph construction method fails to model complex and diverse structural relationships of HSI data. To address this problem, we propose a data-driven method, named iterative graph autoencoder for BS (IGAEBS). It adaptively captures structure information by a data-specific automatic construction process, rather than by a fixed empirical design. Specifically, we propose a new unsupervised pretext task to train graph convolution neural networks to extract HSI features. These features are used to construct a graph to represent the structural relationships among bands. To enhance the reliability of the graph, we further design an iterative graph improvement mechanism to progressively refine the structure representation. Using the derived graph, we partition the bands into several clusters and select a representative band from each cluster. During the selection process, both intracluster information and intercluster information are considered to improve the discriminativeness of band subset. Extensive experiments are conducted on three public datasets to validate the superiority of the proposed method compared to other state-of-the-art methods. |
| Author | Yao, Qingren Zhou, Yuan Huo, Shuwei Li, Xiaofeng |
| Author_xml | – sequence: 1 givenname: Yuan orcidid: 0000-0002-6072-337X surname: Zhou fullname: Zhou, Yuan email: zhouyuan@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Qingren orcidid: 0000-0002-4922-5775 surname: Yao fullname: Yao, Qingren email: qingren@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Shuwei orcidid: 0000-0002-7290-7838 surname: Huo fullname: Huo, Shuwei email: huosw@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 4 givenname: Xiaofeng orcidid: 0000-0001-7038-5119 surname: Li fullname: Li, Xiaofeng email: xiaofeng.li@ieee.org organization: Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Qingdao, Shandong, China |
| BookMark | eNp9kE1Lw0AQhhepYFv9AYKHgOfU_Up2c_BQi6aFgmArHpfNZkK3xCTuboX-exPag3jwNAy8z7zMM0Gjpm0AoVuCZ4Tg7GGbv21mFFM2Y1QwIdILNCZJImOccj5CY0yyNKYyo1do4v0eY8ITIsbocXnswPkOTHC6jp50U0YbqPvVtk30YcMuWgVwOthviHKnu100P4QWGtOW4K7RZaVrDzfnOUXvL8_bxTJev-arxXwdG5rxEHNItKykZEKbQiQCMCkKwTPMQENFMzCVLDErOTekECk1VMoCTEm0KKjRlE3R_elu59qvA_ig9u3BNX2lorL_hDOekj5FTinjWu8dVKpz9lO7oyJYDZbUYEkNltTZUs-IP4yxQQ_P9z5s_S95dyItAPxqIpRyydkP7Hh3Ng |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3435846 crossref_primary_10_1080_01431161_2024_2431174 crossref_primary_10_1109_JSTARS_2024_3520960 crossref_primary_10_1109_TGRS_2024_3474976 crossref_primary_10_1109_TGRS_2024_3382638 crossref_primary_10_1109_TGRS_2025_3574020 |
| Cites_doi | 10.1109/JSTARS.2020.3018229 10.1109/36.803411 10.1016/j.compag.2020.105968 10.1109/TPAMI.2021.3125687 10.1109/TGRS.2020.2963848 10.1002/0471200611 10.1109/ICIP.2011.6116223 10.1109/TGRS.2020.3047223 10.1109/CVPR.2013.174 10.1109/TGRS.2019.2959342 10.1109/TGRS.2018.2828161 10.1109/TGRS.2020.3048138 10.1109/TGRS.2021.3068779 10.1109/TGRS.2021.3116147 10.24963/ijcai.2021/418 10.1109/TGRS.2015.2450759 10.1109/TGRS.2021.3056722 10.1109/LGRS.2020.3013235 10.1016/j.dt.2022.02.007 10.1109/TGRS.2014.2307880 10.1109/JSTARS.2022.3174412 10.1109/TGRS.2021.3121671 10.1609/aaai.v30i1.10302 10.1109/TGRS.2021.3129841 10.1109/JSTARS.2019.2941454 10.1109/MGRS.2017.2762087 10.1109/TGRS.2021.3049372 10.1109/JSTARS.2020.2964000 10.1109/TGRS.2022.3167888 10.1109/TGRS.2021.3102246 10.1109/TGRS.2021.3102422 10.1080/10095020.2020.1720529 10.1016/j.neucom.2021.03.035 10.1109/TIP.2022.3177322 10.1109/TGRS.2022.3179513 10.1109/TNNLS.2015.2477537 10.1109/MGRS.2019.2911100 10.1109/TGRS.2019.2951433 10.1109/MGRS.2019.2902525 10.1609/aaai.v30i1.10168 10.1109/TNNLS.2022.3157711 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2023.3273776 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TGRS_2023_3273776 10122484 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFC1523204 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62171320; U2006211 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-4e5a8f8837acb757e01bb74903eaef29ecf8d03d44c1b762c288becd1a7b2ca23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000996488200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:36:23 EDT 2025 Sat Nov 29 03:32:22 EST 2025 Tue Nov 18 22:43:34 EST 2025 Wed Aug 27 02:50:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-4e5a8f8837acb757e01bb74903eaef29ecf8d03d44c1b762c288becd1a7b2ca23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7038-5119 0000-0002-4922-5775 0000-0002-6072-337X 0000-0002-7290-7838 |
| PQID | 2814543461 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2814543461 ieee_primary_10122484 crossref_primary_10_1109_TGRS_2023_3273776 crossref_citationtrail_10_1109_TGRS_2023_3273776 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref16 ref19 ref18 niepert (ref37) 2016 bruna (ref36) 2014 ref24 ref23 ref26 ref25 ref42 ref20 kipf (ref38) 2017 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref31 doi: 10.1109/JSTARS.2020.3018229 – ident: ref15 doi: 10.1109/36.803411 – ident: ref3 doi: 10.1016/j.compag.2020.105968 – ident: ref40 doi: 10.1109/TPAMI.2021.3125687 – ident: ref10 doi: 10.1109/TGRS.2020.2963848 – ident: ref44 doi: 10.1002/0471200611 – ident: ref23 doi: 10.1109/ICIP.2011.6116223 – start-page: 1 year: 2014 ident: ref36 article-title: Spectral networks and locally connected networks on graphs publication-title: Proc Int Conf Learn Represent – ident: ref14 doi: 10.1109/TGRS.2020.3047223 – ident: ref43 doi: 10.1109/CVPR.2013.174 – ident: ref30 doi: 10.1109/TGRS.2019.2959342 – ident: ref18 doi: 10.1109/TGRS.2018.2828161 – ident: ref12 doi: 10.1109/TGRS.2020.3048138 – ident: ref33 doi: 10.1109/TGRS.2021.3068779 – ident: ref2 doi: 10.1109/TGRS.2021.3116147 – ident: ref35 doi: 10.24963/ijcai.2021/418 – ident: ref17 doi: 10.1109/TGRS.2015.2450759 – ident: ref11 doi: 10.1109/TGRS.2021.3056722 – ident: ref26 doi: 10.1109/LGRS.2020.3013235 – start-page: 2014 year: 2016 ident: ref37 article-title: Learning convolutional neural networks for graphs publication-title: Proc Int Conf Mach Learn – ident: ref39 doi: 10.1016/j.dt.2022.02.007 – ident: ref21 doi: 10.1109/TGRS.2014.2307880 – ident: ref4 doi: 10.1109/JSTARS.2022.3174412 – ident: ref29 doi: 10.1109/TGRS.2021.3121671 – ident: ref41 doi: 10.1609/aaai.v30i1.10302 – ident: ref13 doi: 10.1109/TGRS.2021.3129841 – ident: ref19 doi: 10.1109/JSTARS.2019.2941454 – ident: ref1 doi: 10.1109/MGRS.2017.2762087 – ident: ref27 doi: 10.1109/TGRS.2021.3049372 – ident: ref6 doi: 10.1109/JSTARS.2020.2964000 – start-page: 1 year: 2017 ident: ref38 article-title: Semi-supervised classification with graph convolutional networks publication-title: Proc Int Conf Learn Represent – ident: ref22 doi: 10.1109/TGRS.2022.3167888 – ident: ref34 doi: 10.1109/TGRS.2021.3102246 – ident: ref24 doi: 10.1109/TGRS.2021.3102422 – ident: ref28 doi: 10.1080/10095020.2020.1720529 – ident: ref8 doi: 10.1016/j.neucom.2021.03.035 – ident: ref5 doi: 10.1109/TIP.2022.3177322 – ident: ref32 doi: 10.1109/TGRS.2022.3179513 – ident: ref16 doi: 10.1109/TNNLS.2015.2477537 – ident: ref9 doi: 10.1109/MGRS.2019.2911100 – ident: ref25 doi: 10.1109/TGRS.2019.2951433 – ident: ref7 doi: 10.1109/MGRS.2019.2902525 – ident: ref42 doi: 10.1609/aaai.v30i1.10168 – ident: ref20 doi: 10.1109/TNNLS.2022.3157711 |
| SSID | ssj0014517 |
| Score | 2.4504142 |
| Snippet | Hyperspectral band selection (BS) is an important task for hyperspectral image (HSI) processing, which aims to select a discriminative and low-redundant band... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Banded structure Construction Convolution Correlation Design Feature extraction Graph autoencoder (GAE) Graph neural networks graph representation Graphical representations hyperspectral band selection (BS) Hyperspectral imaging Information processing Iterative methods Methods Neural networks Redundancy representativeness Symmetric matrices Task analysis |
| Title | Hyperspectral Band Selection With Iterative Graph Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10122484 https://www.proquest.com/docview/2814543461 |
| Volume | 61 |
| WOSCitedRecordID | wos000996488200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4oaAHP-bE6ZQePAndmjRrkoOHKX5dRNzE3UqavOJANtk6_36TtBsDUfDWQ14p76XvIy_v9wO4oDnROVcmNInqhUzqJFQJyjDRmVJoXGOHebIJ_vQkRiP5XA2r-1kYRPSXz7DjHn0v30z1wh2VdYnvAwlWgxrnvBzWWrUMWI9Us9FJaKsIWrUwSSS7w_uXQcfxhHdiG625wxdZC0KeVeWHK_bx5W7vn1-2D7tVIhn0S8sfwAZOGrCzBi_YgC1_vVPPD-HqwZab5VTlzApdq4kJBp4Bx5oleBsX78Gjh1e2vi-4dxjWQX9RTB3IpcFZE17vboc3D2FFnBBqKlkRMuwpkQtbeyqd8R7HiGQZZzKKUWFOJepcmCg2jGmSWW-oqRDWloYonlGtaHwE9cl0gscQ2OwQiWFK2VSNWSGZm4yrXHNhGMZUtSBaajLVFaq4I7f4SH11EcnUKT91yk8r5bfgciXyWUJq_LW46bS9trBUdAvaS3ul1V83T6mwu4DFLCEnv4idwrZ7e3mG0oZ6MVvgGWzqr2I8n537DfUNa4nImw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58oh58i6ur9uBJ6NqkaZMcPKyirqiL6IreSppMUZBd2e36-03SKgui4K2HDC0z6Twyme8DOKQF0QVXJjSpSkImdRqqFGWY6lwpNK6xwzzZBO92xfOzvKuH1f0sDCL6y2fYco--l28GeuyOyo6J7wMJNg2zCWOUVONa300DlpB6OjoNbR1B6yYmieRx7_L-oeWYwluxjdfcIYxMhCHPq_LDGfsIc7Hyz29bheU6lQzale3XYAr767A0ATC4DvP-gqcebcBJxxac1Vzl0Aqdqr4JHjwHjjVM8PRavgRXHmDZer_g0qFYB-1xOXAwlwaHm_B4cd4764Q1dUKoqWRlyDBRohC2-lQ65wnHiOQ5ZzKKUWFBJepCmCg2jGmSW3-oqRDWmoYonlOtaLwFM_1BH7chsPkhEsOUsskas0KyMDlXhebCMIypakD0pclM17jijt7iLfP1RSQzp_zMKT-rld-Ao2-R9wpU46_Fm07bEwsrRTeg-WWvrP7vRhkVdhewmKVk5xexA1jo9G5vspur7vUuLLo3VScqTZgph2Pcgzn9Ub6Ohvt-c30CByHL4g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Band+Selection+With+Iterative+Graph+Autoencoder&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhou%2C+Yuan&rft.au=Yao%2C+Qingren&rft.au=Huo%2C+Shuwei&rft.au=Li%2C+Xiaofeng&rft.date=2023&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2023.3273776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3273776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |