Stacked Graph Fusion Denoising Autoencoder for Hyperspectral Anomaly Detection

Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5
Main Authors: Zhang, Yongshan, Li, Yijiang, Wang, Xinxin, Jiang, Xinwei, Zhou, Yicong
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-598X, 1558-0571
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we propose a stacked graph fusion denoising autoencoder (SGFDAE) for hyperspectral anomaly detection. Specifically, the global and local graphs are constructed from an HSI to explore potential structural and spatial information. With the designed graph fusion strategy, an advanced graph denoising autoencoder with deep architecture is developed in a hierarchical manner. To achieve better reconstruction and detection, a greedy layerwise unsupervised pretraining strategy is presented for network training. Experiments show that SGFDAE achieves 97.17%, 98.43%, and 98.90% detection accuracies by averaging the results of the datasets from three different scenes and outperforms the state-of-the-art methods.
AbstractList Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we propose a stacked graph fusion denoising autoencoder (SGFDAE) for hyperspectral anomaly detection. Specifically, the global and local graphs are constructed from an HSI to explore potential structural and spatial information. With the designed graph fusion strategy, an advanced graph denoising autoencoder with deep architecture is developed in a hierarchical manner. To achieve better reconstruction and detection, a greedy layerwise unsupervised pretraining strategy is presented for network training. Experiments show that SGFDAE achieves 97.17%, 98.43%, and 98.90% detection accuracies by averaging the results of the datasets from three different scenes and outperforms the state-of-the-art methods.
Author Wang, Xinxin
Li, Yijiang
Jiang, Xinwei
Zhou, Yicong
Zhang, Yongshan
Author_xml – sequence: 1
  givenname: Yongshan
  orcidid: 0000-0001-5817-1732
  surname: Zhang
  fullname: Zhang, Yongshan
  email: yszhang.cug@gmail.com
  organization: School of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 2
  givenname: Yijiang
  orcidid: 0009-0005-1733-5645
  surname: Li
  fullname: Li, Yijiang
  organization: School of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 3
  givenname: Xinxin
  surname: Wang
  fullname: Wang, Xinxin
  organization: Department of Computer and Information Science, University of Macau, Macau, China
– sequence: 4
  givenname: Xinwei
  orcidid: 0000-0001-6783-2176
  surname: Jiang
  fullname: Jiang, Xinwei
  email: ysjxw@hotmail.com
  organization: School of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 5
  givenname: Yicong
  orcidid: 0000-0002-4487-6384
  surname: Zhou
  fullname: Zhou, Yicong
  email: yicongzhou@um.edu.mo
  organization: Department of Computer and Information Science, University of Macau, Macau, China
BookMark eNp9kMFLwzAUxoMouE3_AMFDwXNnkiZNchzTbcJQcAreQkxftbNratIe9t-bsh3Eg6f3eHy_9_F9Y3TauAYQuiJ4SghWt-vl82ZKMWXTjJGccXaCRoRzmWIuyOmwM55yJd_O0TiELY5KKcUIPW46Y7-gSJbetJ_Jog-Va5I7aFwVquYjmfWdg8a6AnxSOp-s9i340ILtvKmTWeN2pt5HfRcvkbxAZ6WpA1we5wS9Lu5f5qt0_bR8mM_WqaWKdSlTzBQURPFuc2pASCu4EVIWJQAnwjJe5BIUVSAxBSxsmZlcGUNoAUrkJJugm8Pf1rvvHkKnt673TbTUGRaSYEGJjCpyUFnvQvBQ6tZXO-P3mmA91KaH2vRQmz7WFhnxh7FVZ4ZsMXFV_0teH8gKAH458ZxmNM9-AJXwfUg
CODEN IGRSBY
CitedBy_id crossref_primary_10_3390_rs16203879
Cites_doi 10.1109/TGRS.2004.841487
10.1109/TGRS.2023.3246565
10.1109/TGRS.2019.2944419
10.1109/JSTARS.2019.2940278
10.1109/TGRS.2021.3097097
10.1109/29.60107
10.1609/aaai.v35i5.16536
10.1109/TGRS.2019.2936609
10.1016/j.neunet.2024.106158
10.1109/TPAMI.2012.120
10.1109/TIM.2022.3222499
10.1109/tmm.2024.3394975
10.1109/TGRS.2021.3057721
10.1109/MGRS.2021.3105440
10.1109/TNNLS.2024.3355166
10.1109/TGRS.2014.2343955
10.1109/TGRS.2023.3276175
10.1109/LGRS.2023.3298681
10.1109/JSTARS.2022.3167830
10.1109/TNNLS.2020.3038659
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2024.3416454
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2024_3416454
10562326
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62106241
  funderid: 10.13039/501100001809
– fundername: Knowledge Innovation Program of Wuhan-Shuguang
  grantid: 2023010201020335
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-494ad2e7dbc62ae78c75a788dfee517c45d68e929e802e07cf3a69aa12de97613
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001269464100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:35:48 EDT 2025
Sat Nov 29 05:54:23 EST 2025
Tue Nov 18 21:18:44 EST 2025
Wed Aug 27 02:05:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-494ad2e7dbc62ae78c75a788dfee517c45d68e929e802e07cf3a69aa12de97613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-1733-5645
0000-0002-4487-6384
0000-0001-5817-1732
0000-0001-6783-2176
PQID 3078107218
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_3078107218
ieee_primary_10562326
crossref_primary_10_1109_LGRS_2024_3416454
crossref_citationtrail_10_1109_LGRS_2024_3416454
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1109/TGRS.2004.841487
– ident: ref10
  doi: 10.1109/TGRS.2023.3246565
– ident: ref12
  doi: 10.1109/TGRS.2019.2944419
– ident: ref18
  doi: 10.1109/JSTARS.2019.2940278
– ident: ref13
  doi: 10.1109/TGRS.2021.3097097
– ident: ref4
  doi: 10.1109/29.60107
– ident: ref11
  doi: 10.1609/aaai.v35i5.16536
– ident: ref7
  doi: 10.1109/TGRS.2019.2936609
– ident: ref17
  doi: 10.1016/j.neunet.2024.106158
– ident: ref16
  doi: 10.1109/TPAMI.2012.120
– ident: ref14
  doi: 10.1109/TIM.2022.3222499
– ident: ref1
  doi: 10.1109/tmm.2024.3394975
– ident: ref19
  doi: 10.1109/TGRS.2021.3057721
– ident: ref2
  doi: 10.1109/MGRS.2021.3105440
– ident: ref20
  doi: 10.1109/TNNLS.2024.3355166
– ident: ref6
  doi: 10.1109/TGRS.2014.2343955
– ident: ref9
  doi: 10.1109/TGRS.2023.3276175
– ident: ref15
  doi: 10.1109/LGRS.2023.3298681
– ident: ref3
  doi: 10.1109/JSTARS.2022.3167830
– ident: ref8
  doi: 10.1109/TNNLS.2020.3038659
SSID ssj0024887
Score 2.3842177
Snippet Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anomalies
Anomaly detection
denoising autoencoder
Detectors
Geoscience and remote sensing
graph neural network
Graphs
hyperspectral imagery
Hyperspectral imaging
Image edge detection
Image reconstruction
Multisensor fusion
Noise reduction
Pixels
Spatial data
Training
Title Stacked Graph Fusion Denoising Autoencoder for Hyperspectral Anomaly Detection
URI https://ieeexplore.ieee.org/document/10562326
https://www.proquest.com/docview/3078107218
Volume 21
WOSCitedRecordID wos001269464100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFL34WBVXV-nBk9DdtE2b5CjqrgdZxAfsrWSTKQprK7UV9t-bpPWFKHgoFDppw0yTzEwy3wdwLAWlGcaxrwiRPpUY-FxHwteKROYiGGfakU2w8ZhPJuK6LVZ3tTCI6A6fYd_eur18XajapsoGgVutw2QRFhlLmmKtT2A97tjwrEvgx4JP2i3MgIjB1ejm1oSCIe2bOdtCWH1bhByryo-p2K0vw41_9mwT1ltH0jttLL8FC5h3YLXlNH-Yd2Bl5Eh759swNh6lGazaG9lH3rC2GTLvHPPi0WYKvNO6KiyepcbSMz6sd2li06YEs7RfyIsnOZsb-cod28p34H54cXd26bc8Cr4KBa18KqjUITI9VUkokXHFYmlCX50hxgFTNNYJR-MnISchEqaySCZCyiDUaLyVINqFpbzIcQ88MuUoMUaKU0aVUkIqDFVCFGYBzyLRBfKu2FS1IOOW62KWumCDiNTaIrW2SFtbdOHko8lzg7Dxl_COVf4XwUbvXei9my9tB-FLGlkgI4v_xvd_aXYAa_btTUqlB0tVWeMhLKvX6vGlPHL_1xv1zM5i
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB889dAX9TzF9ev6cE9CNW3TNnkUdXfl1uVQD_atZJMpCtrK2hX2vzeTxvMOUfChUOiElJl8zEwyvx_ATyU5LzFNQ82YCrnCKBQmkaHRLLEPw7Q0jmwiHw7FaCR_-2J1VwuDiO7yGR7SqzvLN7WeUqrsKHK7dZx9gQWizvLlWq_QesLx4ZFTEKZSjPwhZsTk0aB3eWWDwZgf2lWbQKz-24Ycr8qbxdjtMN3VT_7bGqx4VzI4bm3_DeawWoclz2p-M1uHrz1H2zv7DkPrU9rpaoIefQq6U8qRBadY1beUKwiOp01NiJYGJ4H1YoO-jU7bIswJ9VDV9-puZuUbd3Gr2oA_3bPrk37omRRCHUvehFxyZWLMzVhnscJc6DxVNvg1JWIa5ZqnJhNoPSUULEaW6zJRmVQqig1afyVKNmG-qivcgoCNBSpMkeM451prqTTGOmMay0iUiewAe1FsoT3MOLFd3BUu3GCyIFsUZIvC26IDB3-bPLQYGx8Jb5Dy_xFs9d6B3RfzFX4aPhYJQRkRApzYfqfZD1jqX18MisH58NcOLFNPbYJlF-abyRT3YFE_NbePk3031p4B4IrRqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Graph+Fusion+Denoising+Autoencoder+for+Hyperspectral+Anomaly+Detection&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhang%2C+Yongshan&rft.au=Li%2C+Yijiang&rft.au=Wang%2C+Xinxin&rft.au=Jiang%2C+Xinwei&rft.date=2024&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3416454&rft.externalDocID=10562326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon