Stacked Graph Fusion Denoising Autoencoder for Hyperspectral Anomaly Detection
Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we pr...
Gespeichert in:
| Veröffentlicht in: | IEEE geoscience and remote sensing letters Jg. 21; S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1545-598X, 1558-0571 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we propose a stacked graph fusion denoising autoencoder (SGFDAE) for hyperspectral anomaly detection. Specifically, the global and local graphs are constructed from an HSI to explore potential structural and spatial information. With the designed graph fusion strategy, an advanced graph denoising autoencoder with deep architecture is developed in a hierarchical manner. To achieve better reconstruction and detection, a greedy layerwise unsupervised pretraining strategy is presented for network training. Experiments show that SGFDAE achieves 97.17%, 98.43%, and 98.90% detection accuracies by averaging the results of the datasets from three different scenes and outperforms the state-of-the-art methods. |
|---|---|
| AbstractList | Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most existing methods cannot simultaneously explore both structural and spatial information from global and local perspectives. In this letter, we propose a stacked graph fusion denoising autoencoder (SGFDAE) for hyperspectral anomaly detection. Specifically, the global and local graphs are constructed from an HSI to explore potential structural and spatial information. With the designed graph fusion strategy, an advanced graph denoising autoencoder with deep architecture is developed in a hierarchical manner. To achieve better reconstruction and detection, a greedy layerwise unsupervised pretraining strategy is presented for network training. Experiments show that SGFDAE achieves 97.17%, 98.43%, and 98.90% detection accuracies by averaging the results of the datasets from three different scenes and outperforms the state-of-the-art methods. |
| Author | Wang, Xinxin Li, Yijiang Jiang, Xinwei Zhou, Yicong Zhang, Yongshan |
| Author_xml | – sequence: 1 givenname: Yongshan orcidid: 0000-0001-5817-1732 surname: Zhang fullname: Zhang, Yongshan email: yszhang.cug@gmail.com organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 2 givenname: Yijiang orcidid: 0009-0005-1733-5645 surname: Li fullname: Li, Yijiang organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 3 givenname: Xinxin surname: Wang fullname: Wang, Xinxin organization: Department of Computer and Information Science, University of Macau, Macau, China – sequence: 4 givenname: Xinwei orcidid: 0000-0001-6783-2176 surname: Jiang fullname: Jiang, Xinwei email: ysjxw@hotmail.com organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 5 givenname: Yicong orcidid: 0000-0002-4487-6384 surname: Zhou fullname: Zhou, Yicong email: yicongzhou@um.edu.mo organization: Department of Computer and Information Science, University of Macau, Macau, China |
| BookMark | eNp9kMFLwzAUxoMouE3_AMFDwXNnkiZNchzTbcJQcAreQkxftbNratIe9t-bsh3Eg6f3eHy_9_F9Y3TauAYQuiJ4SghWt-vl82ZKMWXTjJGccXaCRoRzmWIuyOmwM55yJd_O0TiELY5KKcUIPW46Y7-gSJbetJ_Jog-Va5I7aFwVquYjmfWdg8a6AnxSOp-s9i340ILtvKmTWeN2pt5HfRcvkbxAZ6WpA1we5wS9Lu5f5qt0_bR8mM_WqaWKdSlTzBQURPFuc2pASCu4EVIWJQAnwjJe5BIUVSAxBSxsmZlcGUNoAUrkJJugm8Pf1rvvHkKnt673TbTUGRaSYEGJjCpyUFnvQvBQ6tZXO-P3mmA91KaH2vRQmz7WFhnxh7FVZ4ZsMXFV_0teH8gKAH458ZxmNM9-AJXwfUg |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_3390_rs16203879 |
| Cites_doi | 10.1109/TGRS.2004.841487 10.1109/TGRS.2023.3246565 10.1109/TGRS.2019.2944419 10.1109/JSTARS.2019.2940278 10.1109/TGRS.2021.3097097 10.1109/29.60107 10.1609/aaai.v35i5.16536 10.1109/TGRS.2019.2936609 10.1016/j.neunet.2024.106158 10.1109/TPAMI.2012.120 10.1109/TIM.2022.3222499 10.1109/tmm.2024.3394975 10.1109/TGRS.2021.3057721 10.1109/MGRS.2021.3105440 10.1109/TNNLS.2024.3355166 10.1109/TGRS.2014.2343955 10.1109/TGRS.2023.3276175 10.1109/LGRS.2023.3298681 10.1109/JSTARS.2022.3167830 10.1109/TNNLS.2020.3038659 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2024.3416454 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 5 |
| ExternalDocumentID | 10_1109_LGRS_2024_3416454 10562326 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62106241 funderid: 10.13039/501100001809 – fundername: Knowledge Innovation Program of Wuhan-Shuguang grantid: 2023010201020335 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-494ad2e7dbc62ae78c75a788dfee517c45d68e929e802e07cf3a69aa12de97613 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001269464100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 08:35:48 EDT 2025 Sat Nov 29 05:54:23 EST 2025 Tue Nov 18 21:18:44 EST 2025 Wed Aug 27 02:05:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-494ad2e7dbc62ae78c75a788dfee517c45d68e929e802e07cf3a69aa12de97613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-1733-5645 0000-0002-4487-6384 0000-0001-5817-1732 0000-0001-6783-2176 |
| PQID | 3078107218 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_3078107218 ieee_primary_10562326 crossref_primary_10_1109_LGRS_2024_3416454 crossref_citationtrail_10_1109_LGRS_2024_3416454 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref5 doi: 10.1109/TGRS.2004.841487 – ident: ref10 doi: 10.1109/TGRS.2023.3246565 – ident: ref12 doi: 10.1109/TGRS.2019.2944419 – ident: ref18 doi: 10.1109/JSTARS.2019.2940278 – ident: ref13 doi: 10.1109/TGRS.2021.3097097 – ident: ref4 doi: 10.1109/29.60107 – ident: ref11 doi: 10.1609/aaai.v35i5.16536 – ident: ref7 doi: 10.1109/TGRS.2019.2936609 – ident: ref17 doi: 10.1016/j.neunet.2024.106158 – ident: ref16 doi: 10.1109/TPAMI.2012.120 – ident: ref14 doi: 10.1109/TIM.2022.3222499 – ident: ref1 doi: 10.1109/tmm.2024.3394975 – ident: ref19 doi: 10.1109/TGRS.2021.3057721 – ident: ref2 doi: 10.1109/MGRS.2021.3105440 – ident: ref20 doi: 10.1109/TNNLS.2024.3355166 – ident: ref6 doi: 10.1109/TGRS.2014.2343955 – ident: ref9 doi: 10.1109/TGRS.2023.3276175 – ident: ref15 doi: 10.1109/LGRS.2023.3298681 – ident: ref3 doi: 10.1109/JSTARS.2022.3167830 – ident: ref8 doi: 10.1109/TNNLS.2020.3038659 |
| SSID | ssj0024887 |
| Score | 2.3842177 |
| Snippet | Anomaly detection for hyperspectral images (HSIs) is a challenging problem to distinguish a few anomalous pixels from a majority of background pixels. Most... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Anomalies Anomaly detection denoising autoencoder Detectors Geoscience and remote sensing graph neural network Graphs hyperspectral imagery Hyperspectral imaging Image edge detection Image reconstruction Multisensor fusion Noise reduction Pixels Spatial data Training |
| Title | Stacked Graph Fusion Denoising Autoencoder for Hyperspectral Anomaly Detection |
| URI | https://ieeexplore.ieee.org/document/10562326 https://www.proquest.com/docview/3078107218 |
| Volume | 21 |
| WOSCitedRecordID | wos001269464100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5cUfTic8X1RQ-ehGrapk1yFHXXgyziA_ZW0mQWF9ZWaivsvzdJuz4QBW-FJm2ZaeaVzPcBHCPlSLMg8ZUaK99YycznqCN_LKjEKGNShg3ZBBsO-WgkbttmddcLg4ju8Bme2ku3l68LVdtS2VngvHWYdKDDWNI0a30C63HHhmdDAj8WfNRuYQZEnN0M7u5NKhjSU2OzLYTVNyfkWFV-mGLnX_rr__yyDVhrA0nvvNH8JixgvgUrLaf502wLlgeOtHe2DUMTUZrFqr2BveX1a1sh8y4xLya2UuCd11Vh8Sw1lp6JYb1rk5s2LZilfUNePMvpzIyv3LGtvAuP_auHi2u_5VHwVSho5VMjdx0i05lKQomMKxZLk_rqMWIcMEVjnXA0cRJyEiJhahzJREgZhBpNtBJEO7CYFznugieIEoJJlFnMqGImvaUi4yTLRIxEEtYDMhdsqlqQcct1MU1dskFEanWRWl2krS56cPIx5aVB2PhrcNcK_8vARu49OJirL20X4WsaWSAji__G936Ztg-r9ulNSeUAFquyxkNYUm_V5LU8cv_XO2y6zVE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD7oqOiLul5wvG0f9kmopmnaJI-izozsOCxeYN5KmpxBQVuZ6Qjz703Suu4iCr4VmpByTnNuyfk-gF_IBLI8SkOtRzq0VjIPBZo4HEmmMM65UrQmm-CDgRgO5Z-mWd33wiCiv3yGx-7Rn-WbUk9dqewk8t6apvOwkDBGSd2u9Q6tJzwfngsKwkSKYXOIGRF50u9e39hkkLJja7UdiNV_bsjzqnwwxt7DdNa--W3rsNqEksFprfsfMIfFBiw3rOb3sw1Y6nra3tkmDGxMaberCbruVdCZuhpZcI5F-eBqBcHptCodoqXBcWCj2KBns9O6CXPsVijKJ_U4s-Mrf3Gr2IK7zsXtWS9smBRCTSWrQmYlbyhyk-uUKuRC80TZ5NeMEJOIa5aYVKCNlFAQioTrUaxSqVREDdp4JYq3oVWUBe5AIImWkitUecKZ5jbBZTIXJM9lgkQR3gbyJthMNzDjju3iMfPpBpGZ00XmdJE1umjD0d8pzzXGxleDt5zw_xlYy70N-2_qy5ptOMliB2XkEODE7ifTfsJy7_aqn_UvB7_3YMWtVBdY9qFVjad4AIv6pXqYjA_9v_YKRjXQmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Graph+Fusion+Denoising+Autoencoder+for+Hyperspectral+Anomaly+Detection&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhang%2C+Yongshan&rft.au=Li%2C+Yijiang&rft.au=Wang%2C+Xinxin&rft.au=Jiang%2C+Xinwei&rft.date=2024&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3416454&rft.externalDocID=10562326 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |