Content-Caching-Oriented Popularity Forecast and User Clustering

Content popularity forecast is a key enabler toward the realization of proactive content caching, contributing to significant reduction of content fetching delay. Different from most of the existing literature that concentrating on enhancing the forecast accuracy, we tailor the popularity forecast a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE internet of things journal Ročník 11; číslo 23; s. 38425 - 38440
Hlavní autoři: Wang, Yitu, Chen, Qi, Wang, Wei, Nakachi, Takayuki, Zhang, Guangchen, Liou, Juinjei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2327-4662, 2327-4662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Content popularity forecast is a key enabler toward the realization of proactive content caching, contributing to significant reduction of content fetching delay. Different from most of the existing literature that concentrating on enhancing the forecast accuracy, we tailor the popularity forecast and user clustering algorithms for improving the caching performance. Specifically, through analyzing the caching performance drop incurred by inaccurate popularity forecast from the Bayesian perspective, we obtain two critical insights, which trigger the following designs: 1) as the utility of forecast varies according to the content rank, we propose a content-caching-oriented popularity forecast algorithm based on Gaussian process (GP), where more computational resource is allocated to forecast the popularity of prioritized contents and 2) to alleviate the influence of forecast error on the rank of prioritized contents, we propose a content-caching-oriented user clustering algorithm based on the K-means algorithm. Since the involved optimization problem is NP-hard, we propose an iterative algorithm, whose convergence property in terms of region stability is proved, as the objective function may vary before a local minima is reached. Finally, the simulation results demonstrate the superiority of the proposed framework.
AbstractList Content popularity forecast is a key enabler toward the realization of proactive content caching, contributing to significant reduction of content fetching delay. Different from most of the existing literature that concentrating on enhancing the forecast accuracy, we tailor the popularity forecast and user clustering algorithms for improving the caching performance. Specifically, through analyzing the caching performance drop incurred by inaccurate popularity forecast from the Bayesian perspective, we obtain two critical insights, which trigger the following designs: 1) as the utility of forecast varies according to the content rank, we propose a content-caching-oriented popularity forecast algorithm based on Gaussian process (GP), where more computational resource is allocated to forecast the popularity of prioritized contents and 2) to alleviate the influence of forecast error on the rank of prioritized contents, we propose a content-caching-oriented user clustering algorithm based on the K-means algorithm. Since the involved optimization problem is NP-hard, we propose an iterative algorithm, whose convergence property in terms of region stability is proved, as the objective function may vary before a local minima is reached. Finally, the simulation results demonstrate the superiority of the proposed framework.
Author Wang, Yitu
Nakachi, Takayuki
Chen, Qi
Liou, Juinjei
Wang, Wei
Zhang, Guangchen
Author_xml – sequence: 1
  givenname: Yitu
  orcidid: 0000-0003-4453-5966
  surname: Wang
  fullname: Wang, Yitu
  organization: School of Electrical and Information Engineering, the Key Laboratory of Intelligent Information and Big Data Processing of Ningxia Province, and the Intelligent Equipment and Precision Measurement Technology Research and Development Group, North Minzu University, Yinchuan, China
– sequence: 2
  givenname: Qi
  orcidid: 0009-0000-7982-9329
  surname: Chen
  fullname: Chen, Qi
  email: chenqi_123@zju.edu.cn
  organization: School of Artificial Intelligence and Law, Shanghai University of Political Science and Law, Shanghai, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0003-2153-9075
  surname: Wang
  fullname: Wang, Wei
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Takayuki
  orcidid: 0000-0002-7970-454X
  surname: Nakachi
  fullname: Nakachi, Takayuki
  organization: Information Technology Center, University of the Ryukyus, Nakagami, Japan
– sequence: 5
  givenname: Guangchen
  orcidid: 0000-0002-5561-0661
  surname: Zhang
  fullname: Zhang, Guangchen
  organization: School of Mathematics and Information Sciences, North Minzu University, Yinchuan, China
– sequence: 6
  givenname: Juinjei
  orcidid: 0000-0002-5815-5078
  surname: Liou
  fullname: Liou, Juinjei
  organization: School of Electrical and Information Engineering, North Minzu University, Yinchuan, China
BookMark eNp9kD1PwzAQhi0EEqX0ByAxRGJO8VecegNFFIoqlaGdLce-gKvgFNsZ-u9J1Q4VA9PdSe9zp3tu0KXvPCB0R_CUECwf3xer9ZRiyqeMc1FIcoFGlNEy50LQy7P-Gk1i3GKMB6wgUozQU9X5BD7llTZfzn_mq-CGEWz20e36VgeX9tm8C2B0TJn2NttECFnV9jFBGIBbdNXoNsLkVMdoM39ZV2_5cvW6qJ6XuaGSp5wZM2uEMAYw4xRmtbVcM0yNKBpMCkvLmjRSAFje1BhqTng9K3GNa8GEtSUbo4fj3l3ofnqISW27PvjhpGKEYclowcmQKo8pE7oYAzTKuKSTG54M2rWKYHUwpg7G1MGYOhkbSPKH3AX3rcP-X-b-yDgAOMsLJqUQ7Bd6mnie
CODEN IITJAU
CitedBy_id crossref_primary_10_1007_s11036_025_02445_w
crossref_primary_10_1007_s12083_025_01950_9
Cites_doi 10.1109/TPDS.2021.3135257
10.1109/TCOMM.2021.3059305
10.1002/widm.53
10.1145/3038912.3052626
10.1016/j.tcs.2010.05.034
10.1109/TNSM.2022.3218081
10.1109/VTC2021-Fall52928.2021.9625449
10.1109/TNNLS.2014.2379930
10.1109/TCCN.2021.3130995
10.1109/TNET.2018.2825460
10.1109/tits.2024.3368413
10.1109/TWC.2020.3027596
10.1109/TCOMM.2023.3277530
10.1109/JIOT.2021.3056084
10.1109/ACCESS.2023.3245803
10.1109/3477.764879
10.1109/INFOCOM42981.2021.9488731
10.1109/MWC.021.2200535
10.1109/WINCOM47513.2019.8942587
10.1109/MCOM.2019.1800155
10.7551/mitpress/3206.001.0001
10.1109/VTCSpring.2017.8108551
10.1109/TNET.2021.3121098
10.1016/j.jnca.2021.103158
10.1109/GLOCOM.2016.7841857
10.1109/TSMC.2023.3281973
10.1007/978-3-319-05359-2_9
10.1109/WD.2017.7918125
10.1109/tcss.2024.3378349
10.1109/TNSM.2021.3053645
10.1007/978-1-4612-1494-6
10.1109/JIOT.2023.3235661
10.1109/JIOT.2021.3097768
10.1109/ACCESS.2020.2972640
10.1109/ACCESS.2019.2927494
10.1109/TMC.2023.3349315
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2024.3446591
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 38440
ExternalDocumentID 10_1109_JIOT_2024_3446591
10639966
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62301007; U20A20158; 24YJZH023
  funderid: 10.13039/501100001809
– fundername: Humanities and Social Sciences Project of the Ministry of Education
  grantid: 24YJZH023
– fundername: Ningxia Natural Science Foundation for Young Elite Scientists Sponsorship Program
  funderid: 10.13039/501100004731
– fundername: NingXia Natural Science Foundation for Outstanding Young Scholar, JSPS Grant-in-AID for Scientific Research
  grantid: 22K04089
– fundername: Key Research and Development Program of Zhejiang
  grantid: 2022C03078
– fundername: Key R&D projects in the Ningxia Hui Autonomous Region
– fundername: Soft Science Program of Shanghai
  grantid: 23692122200
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-3cc8f66cce0342e8bdd4a302c65f015d27b1f96eed4fb0eb414b870b0b636dd73
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001360506300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 12:59:14 EDT 2025
Tue Nov 18 22:23:51 EST 2025
Sat Nov 29 01:44:09 EST 2025
Wed Aug 27 03:03:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-3cc8f66cce0342e8bdd4a302c65f015d27b1f96eed4fb0eb414b870b0b636dd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2153-9075
0000-0002-5561-0661
0000-0003-4453-5966
0000-0002-7970-454X
0009-0000-7982-9329
0000-0002-5815-5078
PQID 3130932541
PQPubID 2040421
PageCount 16
ParticipantIDs proquest_journals_3130932541
crossref_citationtrail_10_1109_JIOT_2024_3446591
ieee_primary_10639966
crossref_primary_10_1109_JIOT_2024_3446591
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
ref15
ref37
ref14
Shi (ref35)
ref36
ref31
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Khan (ref13)
ref24
ref23
Raykar (ref32)
ref26
ref25
ref20
ref41
ref22
ref21
Lee (ref11) 2017
Wilson (ref30)
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref9
  doi: 10.1109/TPDS.2021.3135257
– ident: ref16
  doi: 10.1109/TCOMM.2021.3059305
– ident: ref14
  doi: 10.1002/widm.53
– ident: ref39
  doi: 10.1145/3038912.3052626
– start-page: 1
  volume-title: Proc. Learn. Workshop
  ident: ref32
  article-title: Fast large scale Gaussian process regression using approximate matrix-vector products
– ident: ref34
  doi: 10.1016/j.tcs.2010.05.034
– ident: ref33
  doi: 10.1109/TNSM.2022.3218081
– start-page: 1067
  volume-title: Proc. ICML
  ident: ref30
  article-title: Gaussian process kernels for pattern discovery and extrapolation
– ident: ref15
  doi: 10.1109/VTC2021-Fall52928.2021.9625449
– ident: ref12
  doi: 10.1109/TNNLS.2014.2379930
– ident: ref1
  doi: 10.1109/TCCN.2021.3130995
– ident: ref23
  doi: 10.1109/TNET.2018.2825460
– ident: ref19
  doi: 10.1109/tits.2024.3368413
– ident: ref2
  doi: 10.1109/TWC.2020.3027596
– ident: ref3
  doi: 10.1109/TCOMM.2023.3277530
– ident: ref20
  doi: 10.1109/JIOT.2021.3056084
– ident: ref6
  doi: 10.1109/ACCESS.2023.3245803
– start-page: 232
  volume-title: Proc. IEEE ICADIWT
  ident: ref13
  article-title: DBSCAN: Past, present and future
– ident: ref21
  doi: 10.1109/3477.764879
– ident: ref26
  doi: 10.1109/INFOCOM42981.2021.9488731
– ident: ref4
  doi: 10.1109/MWC.021.2200535
– ident: ref7
  doi: 10.1109/WINCOM47513.2019.8942587
– ident: ref41
  doi: 10.1109/MCOM.2019.1800155
– ident: ref22
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref5
  doi: 10.1109/VTCSpring.2017.8108551
– ident: ref24
  doi: 10.1109/TNET.2021.3121098
– ident: ref18
  doi: 10.1016/j.jnca.2021.103158
– ident: ref28
  doi: 10.1109/GLOCOM.2016.7841857
– ident: ref31
  doi: 10.1109/TSMC.2023.3281973
– ident: ref37
  doi: 10.1007/978-3-319-05359-2_9
– ident: ref38
  doi: 10.1109/WD.2017.7918125
– ident: ref36
  doi: 10.1109/tcss.2024.3378349
– ident: ref25
  doi: 10.1109/TNSM.2021.3053645
– ident: ref29
  doi: 10.1007/978-1-4612-1494-6
– ident: ref17
  doi: 10.1109/JIOT.2023.3235661
– ident: ref40
  doi: 10.1109/JIOT.2021.3097768
– ident: ref8
  doi: 10.1109/ACCESS.2020.2972640
– ident: ref27
  doi: 10.1109/ACCESS.2019.2927494
– start-page: 63
  volume-title: Proc. IEEE IITSI
  ident: ref35
  article-title: Research on k-means clustering algorithm: An improved k-means clustering algorithm
– year: 2017
  ident: ref11
  article-title: Deep neural networks as gaussian processes
  publication-title: arXiv:1711.00165
– ident: ref10
  doi: 10.1109/TMC.2023.3349315
SSID ssj0001105196
Score 2.3316617
Snippet Content popularity forecast is a key enabler toward the realization of proactive content caching, contributing to significant reduction of content fetching...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38425
SubjectTerms Accuracy
Algorithms
Caching
Clustering
Clustering algorithms
Complexity theory
content caching
Gaussian process
Gaussian process (GP)
Iterative algorithms
K-means
popularity forecast
Prediction algorithms
Predictive models
Servers
Time series analysis
Title Content-Caching-Oriented Popularity Forecast and User Clustering
URI https://ieeexplore.ieee.org/document/10639966
https://www.proquest.com/docview/3130932541
Volume 11
WOSCitedRecordID wos001360506300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9OPHhxfkycTunBk5CZNGna3JThUA_bDhvsVvJVEEYnW-ffb17a-YEoeGtpXikveX15ee_9fghdy4y6IlYMJzYjmFNCsNLS3yY8LlL_lAoTyCbS0Sibz-WkaVYPvTDOuVB85vpwGXL5dmk2cFTmLRz8qRAt1EpTUTdrfR6oUNiNiCZzSYm8fX4aT30EGPM-A1gwSb_5nkCm8uMPHNzKsP3PDzpEB83-MbqvJ_wI7bjyGLW33AxRY6on6C7ATpUVHtTVkngMgMZ-exlNAmUXcNZFwMtp1LqKVGmjmV-M0WCxAeQEL9BBs-HDdPCIG7YEbGLJK8yMyQohDBCA8dhl2lquGImNSArv822calpI4X0iLzRxmlOuvbFqogUT1qbsFO2Wy9KdoUgzapmjVgji4z9tMsCsZ5oolamEFWkXka0ec9NAiQOjxSIPIQWROag-B9Xnjeq76OZD5LXG0fhrcAd0_WVgreYu6m1nK29MbZ0zCslcH-fS81_ELtA-vL0uQumh3Wq1cZdoz7xVL-vVVVhF7w5CxPs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FfTi-sT12YMnoZo0adrelMVlfe3uYQVvpXkUhKWK2_X3m0mzPhAFby3N0DLJdDKZme8DOMlSasqoYGGsUxJySkhYyMzexjwqE_uUCuXIJpLBIH18zEa-Wd31whhjXPGZOcNLl8vXz2qGR2XWwtGfCrEIS0id5du1Po9UKO5HhM9dUpKd31wPxzYGjPgZQ2CwjH7zPo5O5cc_2DmWXvufn7QOa34HGVw2U74BC6bahPacnSHwxroFFw54qqrDblMvGQ4R0thuMIORI-1C1roAmTlVMa2DotLBg12OQXcyQ-wEK7AND72rcbcfer6EUEUZr0OmVFoKoZACjEcmlVrzgpFIibi0Xl9HiaRlJqxX5KUkRnLKpTVXSaRgQuuE7UCreq7MLgSSUc0M1UIQGwFKlSJqPZOkKNIiZmXSATLXY648mDhyWkxyF1SQLEfV56j63Ku-A6cfIi8NksZfg7dR118GNmruwMF8tnJvbNOcUUzn2kiX7v0idgwr_fH9XX53Pbjdh1V8U1OScgCt-nVmDmFZvdVP09cjt6LeAXv5yEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-Caching-Oriented+Popularity+Forecast+and+User+Clustering&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Wang%2C+Yitu&rft.au=Chen%2C+Qi&rft.au=Wang%2C+Wei&rft.au=Nakachi%2C+Takayuki&rft.date=2024-12-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=11&rft.issue=23&rft.spage=38425&rft.epage=38440&rft_id=info:doi/10.1109%2FJIOT.2024.3446591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2024_3446591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon