A State Sum for the Total Face Color Polynomial

ABSTRACT The total face color polynomial is based upon the Poincaré polynomials of a family of filtered n‐color homologies. It counts the number of n‐face colorings of ribbon graphs for each positive integer n. As such, it may be seen as a successor of the Penrose polynomial, which at n = 3 counts 3...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of graph theory Ročník 109; číslo 4; s. 481 - 491
Hlavní autori: Baldridge, Scott, Kauffman, Louis H., McCarty, Ben
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.08.2025
Predmet:
ISSN:0364-9024, 1097-0118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:ABSTRACT The total face color polynomial is based upon the Poincaré polynomials of a family of filtered n‐color homologies. It counts the number of n‐face colorings of ribbon graphs for each positive integer n. As such, it may be seen as a successor of the Penrose polynomial, which at n = 3 counts 3‐edge colorings (and consequently 4‐face colorings) of planar trivalent graphs. In this paper, we describe a state sum formula for the polynomial. This formula unites two different perspectives about graph coloring: one based upon topological quantum field theory and the other on diagrammatic tensors.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.23239