Rational Polynomial Chaos Expansions for the Stochastic Macromodeling of Network Responses

This paper introduces rational polynomial chaos expansions for the stochastic modeling of the frequency-domain responses of linear electrical networks. The proposed method models stochastic network responses as a ratio of polynomial chaos expansions, rather than the standard single polynomial expans...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. I, Regular papers Ročník 67; číslo 1; s. 225 - 234
Hlavní autoři: Manfredi, Paolo, Grivet-Talocia, Stefano
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-8328, 1558-0806
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces rational polynomial chaos expansions for the stochastic modeling of the frequency-domain responses of linear electrical networks. The proposed method models stochastic network responses as a ratio of polynomial chaos expansions, rather than the standard single polynomial expansion. This approach is motivated by the fact that network responses are best represented by rational functions of both frequency and parameters. In particular, it is proven that the rational stochastic model is exact for lumped networks. The model coefficients are computed via an iterative re-weighted linear least-square regression. Several application examples, concerning both lumped and a distributed systems, illustrate and validate the advocated methodology.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2019.2942109