Adaptive Filtering With Reduced Computational Complexity Using SOPOT Arithmetic

Implementing finite impulse response (FIR) adaptive filters by employing the sums of signed-powers-of-two (SOPOT) arithmetic may lead to simpler hardware and consequently reduced power consumption. In this paper, one evaluates the effects of SOPOT arithmetic on the adaptive filter's recursion a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. I, Regular papers Ročník 69; číslo 2; s. 746 - 756
Hlavní autoři: Coelho, Luiz Felipe da Silveira, Lovisolo, Lisandro, Tcheou, Michel Pompeu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-8328, 1558-0806
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Implementing finite impulse response (FIR) adaptive filters by employing the sums of signed-powers-of-two (SOPOT) arithmetic may lead to simpler hardware and consequently reduced power consumption. In this paper, one evaluates the effects of SOPOT arithmetic on the adaptive filter's recursion algorithms. The filters' coefficients and algorithms' underlying variables are fully operated using SOPOT arithmetic in the whole iterative process. More specifically, one evaluates convergence rate, numerical stability, and accuracy since using few signed-powers-of-two (SPT) terms propagates numerical errors during the adaptive cycle that may impair the algorithm behavior. The SOPOT approximations are obtained through the technique known as Matching Pursuits with Generalized Bit-Plane (MPGBP) algorithm, with notable cost-performance trade-off and low computational complexity. Results are provided for the Least-Mean-Squares (LMS), the Normalized Least-Mean-Squares (NLMS) and the Recursive-Least-Squares (RLS) algorithms, considering adaptive filters employed for system identification and change detection.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2021.3119285