SVAE-WGAN-Based Soft Sensor Data Supplement Method for Process Industry
Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial enviro...
Saved in:
| Published in: | IEEE sensors journal Vol. 22; no. 1; pp. 601 - 610 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial environment is a key issue for the enhancement of prediction accuracy in soft-sensing model. Aimed at this problem, a SVAE-WGAN based soft sensor data supplement method is proposed for process industry. Firstly, deep features are extracted with the stacking of the variational autoencoder (SVAE). Secondly, a generation model is constructed with the combination of stacked variational autoencoder (SVAE) and Wasserstein generative adversarial network (WGAN). Thirdly, the proposed model is optimized with training of dataset in industrial process. Finally, the proposed model is evaluated with abundant experimental tests in terms of MSE, RMSE and MAE. It is shown in the results that the proposed SVAE-WGAN generation network is significantly better than that of the traditional VAE, GAN and WGAN generation network in case of industrial steam volume dataset. Specially, the proposed method is more effective than the latest reference VA-WGAN generation network in terms of RMSE, which is enhanced about 9.08% at most. Moreover, the prediction precision of soft sensors could be improved via the supplement of the training samples. |
|---|---|
| AbstractList | Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by the use of soft sensor technology. However, how to supplement the dataset with effective data supplement method under harsh industrial environment is a key issue for the enhancement of prediction accuracy in soft-sensing model. Aimed at this problem, a SVAE-WGAN based soft sensor data supplement method is proposed for process industry. Firstly, deep features are extracted with the stacking of the variational autoencoder (SVAE). Secondly, a generation model is constructed with the combination of stacked variational autoencoder (SVAE) and Wasserstein generative adversarial network (WGAN). Thirdly, the proposed model is optimized with training of dataset in industrial process. Finally, the proposed model is evaluated with abundant experimental tests in terms of MSE, RMSE and MAE. It is shown in the results that the proposed SVAE-WGAN generation network is significantly better than that of the traditional VAE, GAN and WGAN generation network in case of industrial steam volume dataset. Specially, the proposed method is more effective than the latest reference VA-WGAN generation network in terms of RMSE, which is enhanced about 9.08% at most. Moreover, the prediction precision of soft sensors could be improved via the supplement of the training samples. |
| Author | Ma, Zhongyu Tian, Ran Qiu, Sulong Gao, Shiwei Liu, Yanxing |
| Author_xml | – sequence: 1 givenname: Shiwei orcidid: 0000-0001-9145-2309 surname: Gao fullname: Gao, Shiwei email: gaoshiwei@nwnu.edu.cn organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China – sequence: 2 givenname: Sulong surname: Qiu fullname: Qiu, Sulong organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China – sequence: 3 givenname: Zhongyu surname: Ma fullname: Ma, Zhongyu organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China – sequence: 4 givenname: Ran surname: Tian fullname: Tian, Ran organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China – sequence: 5 givenname: Yanxing surname: Liu fullname: Liu, Yanxing organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China |
| BookMark | eNp9kD1PwzAQhi1UJNrCD0AskZhT7Di2k7GUUopKQQpfm-U4F5GqjYPtDP33JGrFwMB0J9373J2eERrUpgaELgmeEILTm8dsvp5EOCITSqKE8egEDQljSUhEnAz6nuIwpuLzDI2c22BMUsHEEC2y9-k8_FhM1-GtclAEmSl9kEHtjA3ulFdB1jbNFnZQ--AJ_JcpgrIbvVijwblgWRet83Z_jk5LtXVwcaxj9HY_f509hKvnxXI2XYU6SqkPyziOaApAYo05YKAxzgVOeZJTkfNcxwCFKGPQnGkFac41w7TICS1BJUlR0DG6PuxtrPluwXm5Ma2tu5My4oQRzhIiupQ4pLQ1zlkopa688pWpvVXVVhIse2uytyZ7a_JorSPJH7Kx1U7Z_b_M1YGpAOA3n3bvdDH6A0iXeT4 |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1016_j_jtice_2023_105117 crossref_primary_10_1109_TNNLS_2023_3291371 crossref_primary_10_3390_act13010038 crossref_primary_10_1109_JSEN_2023_3279203 crossref_primary_10_1016_j_measurement_2023_113477 crossref_primary_10_1109_ACCESS_2022_3166917 crossref_primary_10_1016_j_physa_2024_129914 crossref_primary_10_3390_s24206738 crossref_primary_10_1007_s11356_024_33752_6 crossref_primary_10_1109_TIM_2022_3170967 crossref_primary_10_1109_JSEN_2023_3261330 crossref_primary_10_1016_j_ces_2023_118958 crossref_primary_10_1016_j_engappai_2025_110306 crossref_primary_10_3390_s23031061 crossref_primary_10_1109_TIM_2024_3427786 crossref_primary_10_1109_JSEN_2023_3339245 crossref_primary_10_1109_JSEN_2022_3230980 crossref_primary_10_1109_JSEN_2024_3351431 crossref_primary_10_1016_j_dsp_2024_104518 crossref_primary_10_1088_1361_6501_ad25dd crossref_primary_10_1109_TIM_2024_3472781 crossref_primary_10_1109_JSEN_2022_3211007 crossref_primary_10_1016_j_psep_2025_107400 crossref_primary_10_1016_j_engappai_2025_111681 crossref_primary_10_1109_TIM_2024_3502784 crossref_primary_10_1155_2022_7979128 crossref_primary_10_1109_JSEN_2025_3563586 crossref_primary_10_1002_qre_3394 crossref_primary_10_1109_TNNLS_2024_3360030 crossref_primary_10_1016_j_compchemeng_2024_108707 crossref_primary_10_1016_j_jprocont_2025_103497 crossref_primary_10_1016_j_robot_2025_105112 |
| Cites_doi | 10.1017/9781108891530.013 10.1016/j.ifacol.2018.09.406 10.1016/j.jprocont.2019.11.004 10.1561/9781680836233 10.1016/j.chemolab.2018.11.007 10.1023/A:1020281327116 10.1109/TNNLS.2021.3085869 10.1109/TPAMI.2020.3015948 10.1016/j.conengprac.2020.104392 10.1109/MLSP.2019.8918926 10.1145/1390156.1390294 10.1109/TIE.2020.2984443 10.1016/j.micpro.2020.103063 10.1016/j.trc.2020.102622 10.1109/TIE.2019.2927197 10.1016/j.compchemeng.2007.07.005 10.1109/CVPR.2018.00577 10.1016/j.compchemeng.2008.12.012 10.1162/neco.2006.18.7.1527 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2021.3128562 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 610 |
| ExternalDocumentID | 10_1109_JSEN_2021_3128562 9615202 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Innovation Ability Promotion Project of Gansu Universities grantid: 2019B-038 – fundername: Backbone Fund of Youth Teachers’ Capability Promotion grantid: NWNU-LKQN2020-14 – fundername: Lanzhou Science and Technology Planning Projects grantid: 2018-01-58; 2017-4-101 – fundername: National Natural Science Foundation of China grantid: 71961028 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-f44239ee14c06e0e340b70968b37b6bc4eed7f4ec65cae9b6c503db13fea88dd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735528200070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:10:10 EDT 2025 Tue Nov 18 22:12:13 EST 2025 Sat Nov 29 06:39:06 EST 2025 Wed Aug 27 05:00:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-f44239ee14c06e0e340b70968b37b6bc4eed7f4ec65cae9b6c503db13fea88dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9145-2309 |
| PQID | 2615165817 |
| PQPubID | 75733 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2021_3128562 proquest_journals_2615165817 crossref_primary_10_1109_JSEN_2021_3128562 ieee_primary_9615202 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan.1,-1 2022-1-1 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.1,-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref11 Kingma (ref10) 2013 Zhang (ref23) ref2 ref1 ref17 Maaloe (ref18) Dumoulin (ref16) Ranzato (ref14); 9 Brock (ref22) ref25 ref20 Li (ref26) 2015 ref21 ref28 Rezende (ref19) ref27 ref29 ref8 Arjovsky (ref30) ref7 ref9 ref4 ref3 ref6 ref5 Salakhutdinov (ref15); 5 Radford (ref24) 2015 |
| References_xml | – volume: 5 start-page: 448 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref15 article-title: Deep Boltzmann machines – ident: ref11 doi: 10.1017/9781108891530.013 – ident: ref17 doi: 10.1016/j.ifacol.2018.09.406 – ident: ref27 doi: 10.1016/j.jprocont.2019.11.004 – ident: ref28 doi: 10.1561/9781680836233 – ident: ref3 doi: 10.1016/j.chemolab.2018.11.007 – ident: ref13 doi: 10.1023/A:1020281327116 – year: 2013 ident: ref10 article-title: Auto-encoding variational Bayes publication-title: arXiv:1312.6114 – ident: ref7 doi: 10.1109/TNNLS.2021.3085869 – ident: ref25 doi: 10.1109/TPAMI.2020.3015948 – start-page: 7354 volume-title: Proc. ICML ident: ref23 article-title: Self-attention generative adversarial networks – ident: ref6 doi: 10.1016/j.conengprac.2020.104392 – start-page: 3 volume-title: Proc. ICLR ident: ref22 article-title: Large scale GAN training for high fidelity natural image synthesis – ident: ref20 doi: 10.1109/MLSP.2019.8918926 – ident: ref9 doi: 10.1145/1390156.1390294 – ident: ref5 doi: 10.1109/TIE.2020.2984443 – year: 2015 ident: ref26 article-title: Generative moment matching networks publication-title: arXiv:1502.02761 – ident: ref29 doi: 10.1016/j.micpro.2020.103063 – volume: 9 start-page: 621 volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist. ident: ref14 article-title: Factored 3-way restricted Boltzmann machines for modeling natural images – ident: ref8 doi: 10.1016/j.trc.2020.102622 – start-page: 1445 volume-title: Proc. ICML ident: ref18 article-title: Auxiliary deep generative models – ident: ref1 doi: 10.1109/TIE.2019.2927197 – ident: ref2 doi: 10.1016/j.compchemeng.2007.07.005 – start-page: 2 volume-title: Proc. ICLR ident: ref16 article-title: Adversarially learned inference – ident: ref21 doi: 10.1109/CVPR.2018.00577 – ident: ref4 doi: 10.1016/j.compchemeng.2008.12.012 – start-page: 1530 volume-title: Proc. ICML ident: ref19 article-title: Variational inference with normalizing flows – year: 2015 ident: ref24 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv:1511.06434 – start-page: 214 volume-title: Proc. ICML ident: ref30 article-title: Wasserstein generative adversarial networks – ident: ref12 doi: 10.1162/neco.2006.18.7.1527 |
| SSID | ssj0019757 |
| Score | 2.478864 |
| Snippet | Challenges of process industry, which is characterized as hugeness of process variables in complexity of industrial environment, can be tackled effectively by... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 601 |
| SubjectTerms | Data models data supplement Datasets Decoding Feature extraction Generative adversarial networks Industries Mathematical models Model accuracy Predictive models Process variables Sensors Soft sensor SVAE-WGAN Training Wasserstein generative adversarial network |
| Title | SVAE-WGAN-Based Soft Sensor Data Supplement Method for Process Industry |
| URI | https://ieeexplore.ieee.org/document/9615202 https://www.proquest.com/docview/2615165817 |
| Volume | 22 |
| WOSCitedRecordID | wos000735528200070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qCOrBVxWrVXLwJK5mX3kcq7YV0SJUa29Lkk1RkFZqFfz3TtJYFEXwlkMCYWYn30yy830ABzJX6FWMNCUFc6TaEkepjYTVssyootprRvaueKcj-n15U4GjWS-Mtdb_fGaP3dC_5Zcj8-quyk4kwm_imCPnOGfTXq3Zi4HkntUTA5hGWcr74QUzpvLkstvsYCWYxFigJiJnyTcM8qIqP05iDy-t1f9tbA1WQhpJGlO_r0PFDjdg-Qu54AYsBn3zh_cqtLu9RjO6bzc60SnCVkm6ePqSLpawozE5VxNFvLqnvyok115UmmA2S0IbAQkCH--bcNdq3p5dREFCITKI45NokDmCP2vjzFBmqU0zqjlWLUKnXDNtMoRIPsisYblRVmpmcpqWOk4HVglRlukWzA9HQ7sNBLE9Z6k2gmMIC8WkVsZoPcgYlQLTxBrQT6MWJvCLO5mLp8LXGVQWzg-F80MR_FCDw9mS5ym5xl-Tq87ws4nB5jWof3quCOH3UiQuT8PcKuY7v6_ahaXE9TH4u5Q6zE_Gr3YPFszb5PFlvO-_rA9V4cjk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5EBfXgW6zPHDyJq9ndbDY5Vq3Pugj10duSZFMUpJVaBf-9kzQWRRG85ZBAmNnJN5PsfB_AjswUehUjTUnBHam2xFFqI2G1rBhVVHvNyLtmXhSi3ZbXY7A36oWx1vqfz-y-G_q3_KpnXt1V2YFE-E0cc-RExlhCh91aozcDmXteTwxhGrE0b4c3zJjKg4tWo8BaMImxRE1ExpNvKORlVX6cxR5gTub-t7V5mA2JJKkPPb8AY7a7CDNf6AUXYSoonD-8L8Fp667eiO5P60V0iMBVkRaev6SFRWyvT47VQBGv7-kvC8mVl5UmmM-S0EhAgsTH-zLcnjRujs6iIKIQGUTyQdRhjuLP2pgZyi21KaM6x7pF6DTXXBuGIJl3mDU8M8pKzU1G00rHaccqIaoqXYHxbq9rV4Egumc81UbkGMRCcamVMVp3GKdSYKJYA_pp1NIEhnEndPFU-kqDytL5oXR-KIMfarA7WvI8pNf4a_KSM_xoYrB5DTY-PVeGAHwpE5epYXYV52u_r9qGqbObq2bZPC8u12E6cV0N_mZlA8YH_Ve7CZPmbfD40t_yX9kH9UPMKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVAE-WGAN-Based+Soft+Sensor+Data+Supplement+Method+for+Process+Industry&rft.jtitle=IEEE+sensors+journal&rft.au=Gao%2C+Shiwei&rft.au=Qiu%2C+Sulong&rft.au=Ma%2C+Zhongyu&rft.au=Tian%2C+Ran&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=1&rft.spage=601&rft_id=info:doi/10.1109%2FJSEN.2021.3128562&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |